
Quantum	error	correc,on	with	
superconduc,ng	circuits	

Mazyar	Mirrahimi	
QUANTIC	team	(INRIA,	LPA,	Mines)	



QUANTUM	INFORMATION	PROCESSING	

What	is	next?	
•  Interes,ng	quantum	devices	in	the	next	10	years:		

					=	complexity	that	CANNOT	EVER	be	classically	simulated	
	 	(>	50	qubits	or	equivalent)	

•  Outstanding	ques,ons:			
			what	level	of	quantum	error	correc,on(QEC)		needed?	
			how	much	overhead	QEC?	
			what’s	the	best	architecture?	
			what	are	the	useful	and	achievable	(on	short	term)	applica,ons?	

	



ROAD-MAP	TOWARDS	FAULT-TOLERANT	QUANTUM	COMPUTATION	

M.H.	Devoret	&	R.J.	Schoelkopf,	Science	339,	1169-1174	(2013).	

of (usually aluminum) atoms assembled in the
shape of metallic wires and plates. The operation
of superconducting qubits is based on two robust
phenomena: superconductivity, which is the
frictionless flow of electrical fluid through the
metal at low temperature (below the supercon-
ducting phase transition), and the Josephson ef-
fect, which endows the circuit with nonlinearity
without introducing dissipation or dephasing.

The collective motion of the electron fluid
around the circuit is described by the flux F
threading the inductor, which plays the role of the
center-of-mass position in a mass-spring mechan-
ical oscillator (27). A Josephson tunnel junction
transforms the circuit into a true artificial atom,
for which the transition from the ground state to
the excited state (|g〉-|e〉) can be selectively ex-
cited and used as a qubit, unlike in the pure LC
harmonic oscillator (Fig. 2B). The Josephson junc-
tion can be placed in parallel with the inductor,
or can even replace the inductor completely, as
in the case of the so-called “charge” qubits. Potential
energy functions of various shapes can be ob-
tained by varying the relative strengths of three
characteristic circuit energies associated with the
inductance, capacitance, and tunnel element (Fig.
2, B and C). Originally, the three basic types were
known as charge (28, 29), flux (30–33), and phase
(34, 35). The performance of all types of qubits
has markedly improved as the fabrication, mea-
surement, and materials issues affecting coher-
ence have been tested, understood, and improved.
In addition, there has been a diversification of
other design variations, such as the quantronium
(36, 37), transmon (38, 39), fluxonium (40), and
“hybrid” (41) qubits; all of these are constructed
from the same elements but seek to improve per-
formance by reducing their sensitivity to de-
coherence mechanisms encountered in earlier
designs. The continuing evolution of designs is a
sign of the robustness and future potential of
the field.

When several of these qubits, which are non-
linear oscillators behaving as artificial atoms, are
coupled to true oscillators (photons in a micro-
wave cavity), one obtains, for low-lying excita-
tions, an effective multiqubit, multicavity system
Hamiltonian of the form
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describing anharmonic qubit mode amplitudes
indexed by j coupled to harmonic cavity modes
indexed bym (42). The symbols a, b, and w refer
to the mode amplitudes and frequency, respec-
tively. When driven with appropriate microwave
signals, this system can perform arbitrary quan-
tum operations at speeds determined by the non-
linear interaction strengths a and c, typically
(43, 44) resulting in single-qubit gate times

within 5 to 50 ns (a/2p ≈ 200 MHz) and two-
qubit entangling gate times within 50 to 500 ns
(c/2p ≈ 20 MHz). We have neglected here the
weak induced anharmonicity of the cavity modes.

Proper design of the qubit circuit to minimize
dissipation coming from the dielectrics surround-
ing the metal of the qubit, and to minimize radia-
tion of energy into other electromagnetic modes
or the circuit environment, led to qubit transition
quality factorsQ exceeding 1million or coherence
times on the order of 100 ms, which in turn make
possible hundreds or even thousands of opera-
tions in one coherence lifetime (see Table 1). One
example of this progression, for the case of the
Cooper-pair box (28) and its descendants, is shown
in Fig. 3A. Spectacular improvements have also
been accomplished for transmission line reso-
nators (45) and the other types of qubits, such
the phase qubit (35) or the flux qubit (46). Rather
stringent limits can now be placed on the in-
trinsic capacitive (47) or inductive (43) losses of
the junction, and we construe this to mean that
junction quality is not yet the limiting factor in
the further development of superconducting
qubits.

Nonetheless, it is not possible to reduce dis-
sipation in a qubit independently of its readout
and control systems (39). Here, we focus on the
most useful and powerful type of readout, which
is called a “quantum nondemolition” (QND) mea-
surement. This type of measurement allows a
continuous monitoring of the qubit state (48, 49).
After a strong QND measurement, the qubit is
left in one of two computational states, |g〉 or |e〉,
depending on the result of the measurement,
which has a classical binary value indicating g or
e. There are three figures of merit that character-

ize this type of readout. The first is QND-ness,
the probability that the qubit remains in the same
state after the measurement, given that the qubit
is initially in a definite state |g〉 or |e〉. The second
is the intrinsic fidelity, the difference between the
probabilities—given that the qubit is initially in a
definite state |g〉 or |e〉—that the readout gives the
correct and wrong answers (with this definition,
the fidelity is zero when the readout value is un-
correlated with the qubit state). The last and most
subtle readout figure of merit is efficiency, which
characterizes the ratio of the number of controlled
and uncontrolled information channels in the read-
out. Maximizing this ratio is of utmost importance
for performing remote entanglement by measure-
ment (50).

Like qubit coherence, and benefiting from it,
progress in QND performance has been spectac-
ular (Fig. 3B). It is now possible to acquire more
than N = 2000 bits of information from a qubit
before it decays through dissipation (Fig. 3A), or,
to phrase it more crudely, read a qubit once in a
time that is a small fraction (1/N ) of its lifetime.
This is a crucial capability for undertaking QEC
in the fourth stage of Fig. 1, because in order to
fight errors, one has to monitor qubits at a pace
faster than the rate at which they occur. Effi-
ciencies in QND superconducting qubit readout
are also progressing rapidly and will soon rou-
tinely exceed 0.5, as indicated by recent experi-
ments (25, 51).

Is It Just About Scaling Up?
Up to now, most of the experiments have been
relatively small scale (only a handful of interact-
ing qubits or degrees of freedom; see Table 1).
Furthermore, almost all the experiments so far are

Operations on single physical qubits  

Algorithms on multiple physical qubits  

QND measurements for error correction and control  

Logical memory with longer lifetime than physical qubits  

Operations on single logical qubits  

Algorithms on multiple logical qubits  

Fault-tolerant quantum computation  
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Fig. 1. Seven stages in the development of quantum information processing. Each advancement requires
mastery of the preceding stages, but each also represents a continuing task that must be perfected in
parallel with the others. Superconducting qubits are the only solid-state implementation at the third
stage, and they now aim at reaching the fourth stage (green arrow). In the domain of atomic physics and
quantum optics, the third stage had been previously attained by trapped ions and by Rydberg atoms. No
implementation has yet reached the fourth stage, where a logical qubit can be stored, via error correction,
for a time substantially longer than the decoherence time of its physical qubit components.
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OUTLINE	

q  	Introduc,on	to	quantum	error	correc,on		

•  Classical	vs	quantum	error	correc,on	
•  Theory	of	quantum	error	correc,on	
•  Insights	on	fault-tolerance	

	
	
	
q  A	con,nuous-variable	alterna,ve	

•  Cat-qubits	for	protec,on	against	photon-loss	
•  Nonlinear	dissipa,on	paving	the	way	towards	fault-tolerance	



QUANTUM	ERROR	CORRECTION	

•  Decoherence:	not	a	fondamental	objec,on	to	quantum	computa,on;	

•  Model	con,nuous	decoherence	as	discrete	error	channels;	

•  Redundantly	encode	quantum	informa,on	in	an	entangled	state	of	a	
mul,-qubit	system	and	perform	quantum	error	correc,on.		



CLASSICAL	NOISE,	CLASSICAL	ERROR	CORRECTION	

Classical	noise:	bit-flip	errors	
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Basics	of	classical	error	correc,on:	redundancy	
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«	repe,,on	code	»		

1-bit	errors	tractable	by	majority	vote:		 1	 0	 0	 0	 1	 0	 0	 0	 1	

Probability	of	incorrec,ble	2-bit	errors:		3p2	(p	error	probability	per	unit	,me)			

0	 1	 1	 1	 0	 1	 1	 1	 0	



QUANTUM	VS	CLASSICAL	ERROR	CORRECTION	

Objec7ve:	 Protect	any	 superposi,on	 state	 c0|0	>  +	c1|1	>	without		
any	knowledge	of		c0	and	c1.	

Quantum	error	correc,on:	bit-flip	errors	

0	 1	c0	 +c1	 c0	 +c1	0	 1	0	 1	0	 1	

•  Majority	vote	erases	the	informa,on.	
•  1-bit	errors	tractable	by	parity	measurement:			Z1Z2		and		Z2Z3	
•  Four	outcomes:	(++)	No	errors,	(-+)	error	on	Q1,	(+-)	error	on	
Q3,	(--)		error	on	Q2.	



QEC	BEYOND	BIT-FLIP	ERRORS	

One	needs	to	correct	four	possible	error	channels:	
I,X,Z,Y=iXZ			

c0	 0	 1	+c1	 or	 c0	 1	 0	+c1	 c0	 0	 1	-	c1	 or	 c0	 1	 0	-	c1	or	

c0	 0	 1	+c1	



q  	Introduc,on	to	quantum	error	correc,on		

•  Classical	vs	quantum	error	correc,on	
•  Theory	of	quantum	error	correc,on	
•  Insights	on	fault-tolerance	

	
	
	
q  A	con,nuous-variable	alterna,ve	

•  Cat-qubits	for	protec,on	against	photon-loss	
•  Nonlinear	dissipa,on	paving	the	way	towards	fault-tolerance	
•  Fault-tolerant	parity	measurements	

OUTLINE	



A	general	error	mechanism:		

		 
E ρs( ) = trenv Uτ ρs⊗ρenv( )Uτ
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k
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Quantum	noise:	interac,on	with	environment	

QEC	BEYOND	BIT-FLIP	ERRORS	



 		 

ET1 ρ( ) = E0ρE0
† + E1ρE1

† ,
E0 = 0 0 + 1− p 1 1 ,				E1 = p 0 1 ,				p= τ /T1

T1	Relaxa,on	

EXAMPLES	

 		 

Eϕ ρ( ) = E0ρE0
† + E1ρE1

† ,
E0 = 1− pI , 				E1 = pσ z , 				p= τ /Tϕ

Pure	dephasing	



Theory	of	QEC	

QEC	BEYOND	BIT-FLIP	ERRORS	

Similarly	to	an	error	channel,	the	error	correc,on	(measuement	
and	feedback)	can	be	modeled	by	a	quantum	opera,on:	

	 	
ρ→R ρ( ) = RkρRk

†

k
∑

This	corrects	an	error	channel																						if	for	any						in	the	
code	space	  

ρ→E ρ( ) ρ

 	  R!E ρ( ) = ρ.



Theorem:	discre,za,on	of	error	channels	

QEC	BEYOND	BIT-FLIP	ERRORS	

If	the	opera,on							corrects	the	error	channel							,	it	corrects	any	
other	error	channel								whose	elements									are	linear	
combina,ons	of	elements								with	complex	coefficients:	
	
	

 	  R!E ρ( ) = ρ 				⇒ 					R!F ρ( ) = ρ 		

 R  E
 F 	Fk

	Ek

Corollary:	case	of	qubits	

It	sufficies	to	correct	the	opera,ons																																																	to	
correct	for	any	single-qubit	errors.	 		

I ,σ x ,σ z ,σ y = iσ xσ z{ }



c0	

FULL	QUANTUM	ERROR	CORRECTION	
Four	possible	error	channels	for	each	qubit:	I,	X,	Z,	Y=iXZ	

0	 1	+c1	

At	least	five	qubits	to	make	all	these	errors	tractable	

or	 c0	 1	 0	+c1	 c0	 0	 1	-	c1	 or	 c0	 1	 0	-	c1	or	

c0	 0	 1	+c1	

7-qubit	Steane	code:		
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FULL	QUANTUM	ERROR	CORRECTION	

Single	round	of	error	correc7on	



q  	Introduc,on	to	quantum	error	correc,on		

•  Classical	vs	quantum	error	correc,on		
•  Theory	of	quantum	error	correc,on	
•  Insights	on	fault-tolerance	

	
	
	
q  A	con,nuous-variable	alterna,ve	

•  Cat-qubits	for	protec,on	against	photon-loss	
•  Nonlinear	dissipa,on	paving	the	way	towards	fault-tolerance	

OUTLINE	



FAULT-TOLERANCE	

Central	idea:	through	opera,ons,	one	should	not	introduce	new	
error	channels	not	taken	into	account	by	QEC.	In	par,cular,	one	
should	avoid	propaga,on/amplifica,on	of	errors		

Example	of	parity	measurements:	simplest	circuit	to	measure	the	
parity	X1X3X5X7	for	the	Steane	code.		

Shor-style error correction

Shor error correction Shor quant-ph/9605011

Simple measurement of check
operators

Requires cat states

Typically, FT procedures require
between t + 1 =

⌃

d
2

⌥

and d repetitions

Time per repetition scales like max
number of check operators per qubit

Non-FT X1X3X5X7 measurement

|+i • • • • X

|+i = (|0i+ |1i) /
p
2

Shor Z -error correction

��e+
↵
= (|0000i+ |1111i) /

p
2

Exception:
Surface code

Bryan Eastin Fault-tolerant Quantum Computing



NOT	FAULT-TOLERANT	

A	bit-flip	of	the	ancilla	qubit	propagates	to	memory	qubits.	

Example	of	parity	measurements:	simplest	circuit	to	measure	the	
parity	X1X3X5X7	for	the	Steane	code.		
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Bryan Eastin Fault-tolerant Quantum Computing
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TOWARDS	A	SOLUTION	

Idea	N1:	transversal	opera,ons	

R
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✐
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✉

✐

Figure 5: A useful identity. The source and the target of an XOR gate are interchanged if
we perform a change of basis with Hadamard rotations.
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Figure 6: Bad and good versions of syndrome measurement. The bad circuit uses the same
ancilla bit several times; the good circuit uses each ancilla bit only once.

understood using the identity represented in Fig. 5 — if we perform a rotation
of basis with a Hadamard gate on both qubits, then the source and the target
of the XOR gate are interchanged. Since we recall that this change of basis
also interchanges a bit flip error with a phase error, we infer that if a phase
error occurs in one qubit, and that qubit is then used as the target qubit of an
XOR gate, then the error will propagate “backward” to the source qubit.

We can now see that the circuit shown in Fig. 2 is not fault tolerant. The
trouble is that a single ancilla qubit is used as a target for four successive XOR
gates. If just a single phase error occurs in the ancilla qubit at some stage,
that one error can feed back to two or more of the qubits in the data block.
The result is that a block phase error may occur with a probability of order ϵ,
which is not acceptable.

To reduce the failure probability to order ϵ2, we must modify the recovery
circuit so that each ancilla qubit couples to no more than one qubit within
the code block. One way to do this is to expand the ancilla from one bit to
four, with each bit the target of a single XOR gate, as in Fig. 6. We can then

14

J.	Preskill,	Fault-tolerant	quantum	computa,on,	1997.	

•  Each	ancilla	qubit	couples	to	no	more	than	one	memory	qubit.	
•  We	readout	more	than	the	required	informa,on	(ancillas	get	

entangled	to	the	codeword).	



TOWARDS	A	SOLUTION	

Idea	N2:	encoding	ancillas	
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Figure 5: A useful identity. The source and the target of an XOR gate are interchanged if
we perform a change of basis with Hadamard rotations.
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Figure 6: Bad and good versions of syndrome measurement. The bad circuit uses the same
ancilla bit several times; the good circuit uses each ancilla bit only once.

understood using the identity represented in Fig. 5 — if we perform a rotation
of basis with a Hadamard gate on both qubits, then the source and the target
of the XOR gate are interchanged. Since we recall that this change of basis
also interchanges a bit flip error with a phase error, we infer that if a phase
error occurs in one qubit, and that qubit is then used as the target qubit of an
XOR gate, then the error will propagate “backward” to the source qubit.

We can now see that the circuit shown in Fig. 2 is not fault tolerant. The
trouble is that a single ancilla qubit is used as a target for four successive XOR
gates. If just a single phase error occurs in the ancilla qubit at some stage,
that one error can feed back to two or more of the qubits in the data block.
The result is that a block phase error may occur with a probability of order ϵ,
which is not acceptable.

To reduce the failure probability to order ϵ2, we must modify the recovery
circuit so that each ancilla qubit couples to no more than one qubit within
the code block. One way to do this is to expand the ancilla from one bit to
four, with each bit the target of a single XOR gate, as in Fig. 6. We can then

14

J.	Preskill,	Fault-tolerant	quantum	computa,on,	1997.	

Data	

Ancilla	{	
			
Shor = 1

8
v
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∑

•  The	parity	of	the	data	qubits	is	mapped	on	the	parity	of	the	Shor	state.	
•  An	error	in	prepara,on	of	the	Shor	state	can	propagate.	



TOWARDS	A	SOLUTION	

Idea	N3:	verifica,on	of	ancillas	

J.	Preskill,	Fault-tolerant	quantum	computa,on,	1997.	

•  Parity	measurement	is	launched	if	the	5th	qubit	is	measured	in	0.	
•  Otherwise	repeat	the	prepara,on.	

|0⟩

|0⟩

|0⟩

|0⟩

|0⟩ R !

❣ !

❣ !

❣

!

❣

!

❣

R

R

R

R

Measure

Figure 8: Construction and verification of the Shor state. If the measurement outcome is 1,
then the state is discarded and a new Shor state is prepared.

the bit-flip syndrome. As with Shor’s method, this procedure “copies” the
data onto the ancilla, where the state of the ancilla has been carefully chosen
to ensure that only the information about the error can be read by measuring
the ancilla. For example, if there is no error, the particular string that we
find in the measurement is a randomly selected Hamming codeword and tells
us nothing about the state of the data. The same procedure is carried out in
the rotated basis to find the phase-flip syndrome. The Steane method has the
advantage over the Shor procedure that only 14 ancilla bits and 14 XOR gates
are needed. But it also has the disadvantage that the ancilla preparation is
more complex, so that the ancilla is somewhat more prone to error.

3.3 Verifying the Ancilla

As we continue with our program to sniff our all the ways in which a recovery
failure could result from a single error, we notice another potential problem.
Due to error propagation, a single error that occurs during the preparation of
the Shor state or Steane state could cause two phase errors in this state, and
these can both propagate to the data if the faulty ancilla is used for syndrome
measurement. Our procedure is not yet fault tolerant.

Therefore the state of the ancilla must be tested for multiple phase errors
before it is used. If it fails the test, it should be discarded, and a new ancilla
state should be constructed.

One way to construct and verify the Shor state is shown in Fig. 8. The
first Hadamard gate and the first three XOR gates in this circuit prepare a
“cat state” (|0000⟩+ |1111⟩), a maximally entangled state of the four ancilla
bits; the final four Hadamard gates rotate the cat state to the Shor state. But

17
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TOWARDS	AN	ERROR-CORRECTED	QUBIT	

		Three	main	strategies	for	implemen,ng	a	logical	qubit:	
	
				-	A	register	of	physical	qubits	with	full	gate	opera,ons	
	
				-	A	fabric	of	physical	qubits	with	nearest	neighbor	gates	
	
				-	A	superconduc,ng	resonator	with	non-linear	drives,	non-linear		

	dissipa,on	and	photon	parity	monitoring.	These	services	are		
	provided	by	Josephson	junc,ons.	

Shor	(1995)	
Steane	(1996)	
Gosesman,	Kitaev,	Preskill	(2001)	
Kitaev	(2006)	
M.M.	et	al.	(2014)	
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q  A	con,nuous-variable	alterna,ve	

•  Cat-qubits	for	protec,on	against	photon-loss	
•  Nonlinear	dissipa,on	paving	the	way	towards	fault-tolerance	
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QUANTUM	HARMONIC	OSCILLATOR	AND	COHERENT	STATES		

The Cat: A Cavity Oscillator 
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Using	classical	control	(e.g.	laser,	force),	one	can	only	make	coherent	displacements	

Glauber	(coherent)	state	
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SCHRÖDINGER	CAT	STATE	FOR	A	HARMONIC	OSCILLATOR		

Cat	state	of	an	oscillator	
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SCHRÖDINGER	CAT	STATE	FOR	A	HARMONIC	OSCILLATOR		

Cat	state	of	an	oscillator	
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PHOTON	LOSS:	MAJOR	DECAY	CHANNEL	OF	A	H.O.	

Dissipation to  
Transmission line 

LC oscillator 

   

d
dt

ρ =κ D[a]ρ,

D[a]ρ = aρa† − 1
2

a†aρ − 1
2
ρa†a.
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Dissipation to  
Transmission line 

LC oscillator 

   

d
dt

ρ =κ D[a]ρ,

D[a]ρ = aρa† − 1
2

a†aρ − 1
2
ρa†a.

     
ρδ t = E(ρ0 ) = El

l=0

∞

∑ ρ0El
†,    El =

1− e−κδ t( )l

l!
e
−κδ t

2
a†a

al

Formula,on	with	error	channels:	

I.L.	Chuang	et	al.,	PRA	56,	1997.	



PHOTON	LOSS:	MAJOR	DECAY	CHANNEL	OF	A	H.O.	

Dissipation to  
Transmission line 

LC oscillator 
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dt

ρ =κ D[a]ρ,

D[a]ρ = aρa† − 1
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Formula,on	with	error	channels:	

Up	to	first	order	in										:	 κδ t
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HARDWARE-EFFICIENT	QUANTUM	ERROR	CORRECTION	

q 	Encoding	and	protec7ng	informa7on	on	a	single	cavity	mode				
		
q 	Minimal	QEC	hardware	:	protec,ng	a	single	high-Q	cavity	mode	(memory),	using		
a	single	qubit	(providing	non-linearity),	one	low-Q	mode	(entropy	evacua,on).	

Idea:	

0L = Cα
+ = 1

2
(α + −α ) 1L = Ciα

+ = 1
2
( iα + −iα )



HARDWARE-EFFICIENT	QUANTUM	ERROR	CORRECTION	

q 	Encoding	and	protec7ng	informa7on	on	a	single	cavity	mode				
		
q 	Minimal	QEC	hardware	:	protec,ng	a	single	high-Q	cavity	mode	(memory),	using		
a	single	qubit	(providing	non-linearity),	one	low-Q	mode	(entropy	evacua,on).	

Another	possibility:	

0L = Cα
− = 1

2
(α − −α ) 1L = Ciα

− = 1
2
( iα − −iα )



TO	LIVE	AND	DIE	IN	A	CAVITY	

*Ofek	et	al.,	Nature	536,	441-445,	2016.	

Even
Parity

Odd
Parity

Figure 1: The cat code cycle. In the logical encoding of |0i ⌘ |C+
↵ i = |↵i+ |�↵i and |1i ⌘ |C+

i↵i = |i↵i+ |�i↵i (normalizations omitted),

the two “2-cats” |C+
↵ i and |C+

i↵i are both eigenstates of even photon number parity (an “n-cat” is a superposition of n coherent states). For
large enough |↵| they are also e↵ectively orthogonal to one another. In this basis, the states along +Xc and +Yc are both “4-cats” of even
parity as well. Note the di↵erent patterns in the fringes of their cartoon Wigner functions, however; although these 4-cats look quite similar,
they are in fact orthogonal as seen clearly in a Fock state expansion. These features allow one to store a qubit in a superposition of 2-cats
and at the same time monitor the parity as the error syndrome without projecting the state out of this encoding. The loss of a single photon
changes not just the parity of the basis states, but the phase relationship between them by a factor of i (|C+

↵ i + |C+
i↵i ! |C�

↵ i + i |C�
i↵i).

Decoding after one jump, one finds the initial qubit state rotated by ⇡/2 about the Z axis (indicated by green shading). Thus, with each
application of â, the encoded state cycles between the even and odd parity subspaces (shaded in red and blue), while due to each consequent
factor of i, the encoded information rotates about the Zc axis by ⇡/2, returning to the original state after four photon jumps.

qubit exposed to its natural environment. We study how all
sources of decoherence, including those arising from an im-
perfect ancilla, together contribute to the probability that
a single round of correction fails. By minimizing this prob-
ability, we suppress the process fidelity decay rate to the
break-even point. Furthermore, we pinpoint the dominant
limitation on performance to be that of forward propaga-
tion of errors from the ancilla, thus motivating the future
steps necessary to realize a fault-tolerant QEC system.

The cat code we implement here is a hardware-e�cient
scheme that requires fewer physical resources and intro-
duces fewer error mechanisms [21, 22] than traditional QEC
proposals. Designed to operate within a continuous vari-
ables framework [29–32], the cat code exploits the fact that
a coherent state |↵i is an eigenstate of the resonator low-
ering operator â: â |↵i = ↵ |↵i. Using a logical basis com-
prised of superpositions of cat states, which are eigenstates
of photon number parity, the cat code requires just a single
ancilla to monitor the dominant error due to single photon
loss induced by resonator energy damping (Fig. 1). This
error channel gives rise to two e↵ects: deterministic energy
decay of the resonator field to vacuum and the accompany-
ing stochastic application of â, which results in a change of
photon number parity of any state within the cat code. The
former becomes a limiting factor only at small resonator
field amplitudes when coherent state overlap can no longer
be neglected (Methods); it can be addressed through ei-
ther dissipative pumping approaches [33] or unitary gates,
imposing no time limit on the duration of the cat code.

The latter is accompanied by phase shifts of ⇡/2 about the
Z�axis within the codeword, indicating that by monitoring
photon parity as the error syndrome, we adhere to the pre-
scriptions for error correction by translating single photon
loss into a unitary operation on the encoded state:

â(c
0

|C+

↵

i+ c
1

|C+

i↵

i) = c
0p
2
(|↵i � |�↵i) + i

c
1p
2
(|i↵i � |�i↵i)

=c
0

|C�
↵

i+ ic
1

|C�
i↵

i .

By detecting photon jumps in real-time with Quantum
Non-Demolition parity measurements [23], we maintain
the knowledge of the phase relationship between the ba-
sis states, thereby protecting the encoded qubit from the
system’s dominant error channel.

Comparing traditional QEC schemes to the cat code, the
former typically protect a qubit from decoherence by pro-
jecting components of the redundant encoding into spaces
defined by four unitary operators: identity Î, and the Pauli
operators �̂

x

, �̂
y

and �̂
z

. In the latter, however, within the
logical encoding of the cat code there are only two such
operators: Î (no photon loss and slight amplitude decay
|↵i ! |↵e��ti) and (Î + i�̂

z

)/
p
2 (application of â). Fur-

thermore, given that the overlap between coherent states
| h↵|i↵i | falls o↵ exponentially with increasing |↵| [20], we
can use basis states of average photon number n̄ ⇡ 2, which
increases the error rate within the codeword by only a fac-
tor of ⇠ 2 [20] rather than by orders of magnitude as in
traditional schemes [24, 25]. Finally, we use real-time feed-
back to not only drastically enhance the fidelity of the par-

2
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MEASURING	PHOTON-NUMBER	PARITY	

Bertet et al. PRL 89, 200402 (2002) 
Sun et al. Nature 511, 444-448 (2014)  
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Tracking Photon Jumps with Repeated Quantum Non-Demolition Parity

Measurements

L. Sun∗,1 A. Petrenko,1 Z. Leghtas,1 B. Vlastakis,1 G. Kirchmair†,1 K. M. Sliwa,1 A. Narla,1 M. Hatridge,1

S. Shankar,1 J. Blumoff,1 L. Frunzio,1 M. Mirrahimi,1, 2 M. H. Devoret,1 and R. J. Schoelkopf1

1Departments of Applied Physics and Physics, Yale University, New Haven, CT 06511, USA
2INRIA Paris-Rocquencourt, Domaine de Voluceau, B.P. 105, 78153 Le Chesnay Cedex, France

Quantum error correction (QEC) is required
for a practical quantum computer because of the
fragile nature of quantum information [1]. In
QEC, information is redundantly stored in a large
Hilbert space and one or more observables must
be monitored to reveal the occurrence of an er-
ror, without disturbing the information encoded
in an unknown quantum state. Such observables,
typically multi-qubit parities such as ⟨σx

1σ
x
2σ

x
3σ

x
4 ⟩,

must correspond to a special symmetry property
inherent to the encoding scheme. Measurements
of these observables, or error syndromes, must
also be performed in a quantum non-demolition
(QND) way and faster than the rate at which
errors occur. Previously, QND measurements
of quantum jumps between energy eigenstates
have been performed in systems such as trapped
ions [2–4], electrons [5], cavity quantum electro-
dynamics (QED) [6, 7], nitrogen-vacancy (NV)
centers [8, 9], and superconducting qubits [10, 11].
So far, however, no fast and repeated monitoring
of an error syndrome has been realized. Here,
we track the quantum jumps of a possible er-
ror syndrome, the photon number parity of a mi-
crowave cavity, by mapping this property onto an
ancilla qubit. This quantity is just the error syn-
drome required in a recently proposed scheme for
a hardware-efficient protected quantum memory
using Schrödinger cat states in a harmonic oscilla-
tor [12]. We demonstrate the projective nature of
this measurement onto a parity eigenspace by ob-
serving the collapse of a coherent state onto even
or odd cat states. The measurement is fast com-
pared to the cavity lifetime, has a high single-shot
fidelity, and has a 99.8% probability per single
measurement of leaving the parity unchanged. In
combination with the deterministic encoding of

∗current address: Center for Quantum Information, Institute for
Interdisciplinary Information Sciences, Tsinghua University, Bei-
jing, P. R. China
†current address: Institut für Experimentalphysik, Universität
Innsbruck, Technikerstraße 25, A-6020 Innsbruck, Austria; In-
stitut für Quantenoptik und Quanteninformation, Österreichische
Akademie der Wissenschaften, Otto-Hittmair-Platz 1, A-6020 Inns-
bruck, Austria

quantum information in cat states realized ear-
lier [13, 14], our demonstrated QND parity track-
ing represents a significant step towards imple-
menting an active system that extends the life-
time of a quantum bit.
Besides their necessity in quantum error correction and

quantum information, QND measurements play a cen-
tral role in quantum mechanics. The application of an
ideal projective QND measurement yields a result corre-
sponding to an eigenvalue of the measured operator, and
projects the system onto the eigenstate associated with
that eigenvalue. Moreover, the measurement must leave
the system in that state, so that subsequent measure-

a

b

Storage

Readout

Qubit

FIG. 1: Experimental device and parity measurement pro-
tocol (P) of a photon state. (a) Bottom half of the device
containing a transmon qubit located in a trench and coupled
to two waveguide cavities. The low frequency cavity, with
ωs/2π = 7.216 GHz and a lifetime of τ0 = 55 µs, is used to
store and manipulate quantum states. The high frequency
cavity, with ωm/2π = 8.174 GHz and a lifetime of 30 ns, al-
lows for a fast readout of the qubit. (b) The protocol for
measuring the parity of the storage cavity field. After an
initial coherent displacement of α, a Ramsey-type measure-
ment is performed. It consists of two π/2 pulses separated by
t = π/χqs, followed by a projective measurement of the qubit,
where χqs is the dispersive interaction between the qubit and
the storage cavity. In this schematic, with the qubit initially
in the ground state |g⟩, the Ramsey-type measurement maps
the even (odd) photon state onto the |e⟩ (|g⟩) state of the
qubit. A subsequent projective measurement indicates the
cavity state parity. The second π/2 pulse can be either Rŷ,−π

2

or Rŷ,π
2
, simply switching the interpretation of the result of

the qubit measurement.
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Î →

χ

m n

+1	

-1	

Courtesy	of	A.	Petrenko	and	R.	Schoelkopf	

ERROR	CORRECTION	START-TO-FINISH		



15 sτ µ≈

*Ofek	et	al.,	Nature	536,	441-445,	2016.	

ERROR	CORRECTION	START-TO-FINISH		



15 sτ µ≈

2α =

130 sτ µ≈

ERROR	CORRECTION	START-TO-FINISH		

*Ofek	et	al.,	Nature	536,	441-445,	2016.	



2α =

15 sτ µ≈

130 sτ µ≈

320 sτ µ≈

QEC	–	NO	POST-SELECTION.	

ERROR	CORRECTION	START-TO-FINISH		

*Ofek	et	al.,	Nature	536,	441-445,	2016.	



2α =

15 sτ µ≈

320 sτ µ≈

130 sτ µ≈

Remove	result	if	
two	consecu7ve	errors	

560 sτ µ≈

Throwing	out	~	20%	of	data	
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*Ofek	et	al.,	Nature	536,	441-445,	2016.	



2α = Remove	result	if	
two	consecu7ve	errors	
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COMPARING	TO	SINGLE	PHOTON	ENCODING	

*Ofek	et	al.,	Nature	536,	441-445,	2016.	



Most	important	limita7ons:	
•  Energy	decay.		
•  Uncorrected	errors:	dephasing	due	to	combina,on	of	Kerr	and	decay.	
•  Non	fault-tolerance:	propaga,on	of	errors.		

TOWARDS	FAULT-TOLERANT	QC	

Rest	of	this	talk:	parametric	methods	to	achieve	fault-tolerance.	

Idea:	driven-dissipa,ve	mechanism		to	restrict	the	dynamics	to	2-	or	
4-dimensional	manifolds																				and																												.			  Span ±α , ±iα{ } Span ±α{ }



q  	Introduc,on	to	quantum	error	correc,on		

•  Classical	vs	quantum	error	correc,on			
•  Theory	of	quantum	error	correc,on	
•  Insights	on	fault-tolerance	

	
	
	
q  A	con,nuous-variable	alterna,ve	

•  Cat-qubits	for	protec,on	against	photon-loss	
•  Nonlinear	dissipa,on	paving	the	way	towards	fault-tolerance	

OUTLINE	



DRIVEN-DAMPED	HARMONIC	OSCILLATOR	

H = ε1
*â + ε1â

†

κ1â
Hamiltonian :#
loss operator :#

x!
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α ,    α = −2iε1 /κ1

 ! / 2



A	SPECIAL	DRIVEN-DAMPED	OSCILLATOR	

H = ε2
*â2 + ε2 (â

†)2

κ 2 â
2

Hamiltonian :!

loss operator :!

α = ± −2iε2 /κ 2

?!

???!

Re(β)#

Im(β)#

Wigner function W(β)#



TWO-PHOTON	EXCHANGE	
  ω p = 2ω s −ω r

drive#

readout storagequbit

ω
pump#

ωr
ωs

ωp

ωs
ωr

ωs
ωs

ωp

  
Hsr = g2

*âs
2âr

† + h.c.( )

ωr
ωs

ωp

ωs
ωr

ωs
ωs

ωp

  ε âr
† + h.c.+#

effective loss operator: #  κ 2 âs
2 effective drive :#

  
ε2 âs

†( )2
+ h.c.

Figure 1: Schematic of the experiment. (A) Confinement of a quantum state belonging to a
large Hilbert space into a two-dimensional quantum manifold. The outer and inner cubes form
a hypercube representing a multi-dimensional Hilbert space. The inner blue sphere represents
the manifold of states spanned by the two coherent states |±↵1i. Quantum states such as the
even and odd Schrödinger cat states

��C±
↵1

↵
= N (|↵1i± |�↵1i) also belong to this manifold,

where N is a normalization factor. Stabilizing forces direct all states towards the inner sphere
without inducing any rotation in this subspace, as indicated by the purple arrows. (B) Two
superconducting cavities are coupled through a Josephson junction. Pump and drive microwave
tones are applied to the readout, creating the appropriate nonlinear interaction which generates
a coherent superposition of steady states in the storage. The readout output port is connected
to an amplifier chain (17, Sec. 1.2). Direct Wigner tomography of the storage is performed
using its input port and the qubit mode. (C) Schematic spectrum of different modes involved
in the experiment. The pump and drive tones are shown as vertical arrows. (D, E) Four-wave
processes involved in the nonlinear damping and nonlinear drive, respectively, experienced by
the storage. In (D), two photons of the storage combine and convert, stimulated by the pump
tone, into a readout photon which is irreversibly radiated away by the transmission line. This
process is balanced by the conversion of the drive tone, which in presence of the pump, creates
two photons in the storage (E).
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CHOICE	OF	QUBIT	BASIS	

|+X⟩ ≈ |α⟩|−X⟩ ≈ |−α⟩

|+Z⟩ = |C+
α
⟩

|−Z⟩ = |C−

α
⟩

Y

|+Z⟩ = |C(0mod4)
α

⟩

|−Z⟩ = |C(2mod4)
α

⟩

|+X⟩ ≈ |C+
α
⟩|−X⟩ ≈ |C+

iα
⟩

Y

(b)

1

  

+Z = Cα
 + = N+ (α + −α ) = c2n∑ 2n

−Z = Cα
 − = N− (α − −α ) = c2n+1∑ 2n+1



A	QUBIT	WITHOUT	PHASE-FLIPS	

Phase-flip	errors	induced	by	reasonable	(local	in	the	phase	
space)	errors	are	suppressed	exponen,ally	in										.		
		

 |α |2

	Tr(σ X
Lρ∞ )	for	ρ0= β β
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CAT	SQUEEZES	OUT	OF	VACUUM	

pumping time#

raw data#

reconstruction#

numerical #
simulation#

0 μs# 2 μs# 7 μs# 19 μs#
π/2 W(β)#

Re(β)#

Im
(β

)#

-2# 0# 2#
-2#
0#
2#

quantum #
interference !#

Leghtas et. al. Science (2015)!



FUTURE:	FULL	QUANTUM	ERROR	CORRECTION	

parity = +1#
parity = -1#

M.M. et. al. NJP (2014)#
S. Mundhada et. al. in prepation.#

loss operator κ 4 â
4

H = ε4 â†( )4
+ ε4

*â4
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