

Quantum error correction with superconducting circuits

Mazyar Mirrahimi QUANTIC team (INRIA, LPA, Mines)

QUANTUM INFORMATION PROCESSING

What is next?

- Interesting quantum devices in the next 10 years:
 = complexity that CANNOT EVER be classically simulated (> 50 qubits or equivalent)
- Outstanding questions:
 - what level of quantum error correction(QEC) needed?
 - how much overhead QEC?
 - what's the best architecture?
 - what are the useful and achievable (on short term) applications?

ROAD-MAP TOWARDS FAULT-TOLERANT QUANTUM COMPUTATION

M.H. Devoret & R.J. Schoelkopf, Science 339, 1169-1174 (2013).

OUTLINE

□ Introduction to quantum error correction

- Classical vs quantum error correction
- Theory of quantum error correction
- Insights on fault-tolerance

- □ A continuous-variable alternative
 - Cat-qubits for protection against photon-loss
 - Nonlinear dissipation paving the way towards fault-tolerance

QUANTUM ERROR CORRECTION

Scheme for reducing decoherence in quantum computer memory

Peter W. Shor*

AT&T Bell Laboratories, Room 2D-149, 600 Mountain Avenue, Murray Hill, New Jersey 07974 (Received 17 May 1995)

- Decoherence: not a fondamental objection to quantum computation;
- Model continuous decoherence as discrete error channels;
- Redundantly encode quantum information in an entangled state of a multi-qubit system and perform quantum error correction.

CLASSICAL NOISE, CLASSICAL ERROR CORRECTION

Probability of incorrectible 2-bit errors: $3p^2$ (p error probability per unit time)

QUANTUM VS CLASSICAL ERROR CORRECTION

Objective: Protect any superposition state $c_0 | 0 > + c_1 | 1 >$ without any knowledge of c_0 and c_1 .

Quantum error correction: bit-flip errors

 $C_0 0 + C_1 1 \iff C_0 0 0 0 + C_1 1 1 1$

- Majority vote erases the information.
- 1-bit errors tractable by **parity measurement**: Z_1Z_2 and Z_2Z_3
- Four outcomes: (++) No errors, (-+) error on Q1, (+-) error on Q3, (--) error on Q2.

QEC BEYOND BIT-FLIP ERRORS

Scheme for reducing decoherence in quantum computer memory

Peter W. Shor*

AT&T Bell Laboratories, Room 2D-149, 600 Mountain Avenue, Murray Hill, New Jersey 07974 (Received 17 May 1995)

One needs to correct four possible error channels: I,X,Z,Y=iXZ

OUTLINE

□ Introduction to quantum error correction

- Classical vs quantum error correction
- Theory of quantum error correction
- Insights on fault-tolerance

- □ A continuous-variable alternative
 - Cat-qubits for protection against photon-loss
 - Nonlinear dissipation paving the way towards fault-tolerance
 - Fault-tolerant parity measurements

QEC BEYOND BIT-FLIP ERRORS

Quantum noise: interaction with environment

A general error mechanism:

$$\mathcal{E}(\rho_s) = \mathbf{tr}_{env} \Big[\mathbf{U}_{\tau} \big(\rho_s \otimes \rho_{env} \big) \mathbf{U}_{\tau}^{\dagger} \Big] = \sum_k \mathbf{E}_k \rho_s \mathbf{E}_k^{\dagger}$$
with $\sum_k \mathbf{E}_k^{\dagger} \mathbf{E}_k = \mathbf{I}.$

EXAMPLES

Pure dephasing

$$\mathcal{E}_{\varphi}(\rho) = \mathbf{E}_{0}\rho\mathbf{E}_{0}^{\dagger} + \mathbf{E}_{1}\rho\mathbf{E}_{1}^{\dagger},$$
$$\mathbf{E}_{0} = \sqrt{1-p}\mathbf{I}, \quad \mathbf{E}_{1} = \sqrt{p}\boldsymbol{\sigma}_{z}, \quad p = \tau / T_{\varphi}$$

T1 Relaxation

$$\mathcal{E}_{T1}(\rho) = E_0 \rho E_0^{\dagger} + E_1 \rho E_1^{\dagger},$$

$$E_0 = |0\rangle \langle 0| + \sqrt{1-p} |1\rangle \langle 1|, \quad E_1 = \sqrt{p} |0\rangle \langle 1|, \quad p = \tau / T1$$

QEC BEYOND BIT-FLIP ERRORS

Theory of QEC

Similarly to an error channel, the error correction (measuement and feedback) can be modeled by a quantum operation:

$$\rho \to \mathcal{R}(\rho) = \sum_{k} \mathbf{R}_{k} \rho \mathbf{R}_{k}^{\dagger}$$

This corrects an error channel $\rho \rightarrow \mathcal{E}(\rho)$ if for any ρ in the code space

$$\mathcal{R}\circ\mathcal{E}(
ho)=
ho.$$

QEC BEYOND BIT-FLIP ERRORS

Theorem: discretization of error channels

If the operation \mathcal{R} corrects the error channel \mathcal{E} , it corrects any other error channel \mathcal{F} whose elements F_k are linear combinations of elements E_k with complex coefficients:

$$\mathcal{R} \circ \mathcal{E}(\rho) = \rho \quad \Rightarrow \quad \mathcal{R} \circ \mathcal{F}(\rho) = \rho$$

Corollary: case of qubits

It sufficies to correct the operations $\{I, \sigma_x, \sigma_z, \sigma_y = i\sigma_x\sigma_z\}$ to correct for any single-qubit errors.

FULL QUANTUM ERROR CORRECTION

Four possible error channels for each qubit: I, X, Z, Y=iXZ

FULL QUANTUM ERROR CORRECTION

 $|0_L\rangle = \frac{1}{\sqrt{8}} \left[|0000000\rangle + |1010101\rangle + |0110011\rangle + |1100110\rangle \right]$

 $|1_L\rangle = \frac{1}{\sqrt{8}} \left[|111111\rangle + |0101010\rangle + |1001100\rangle + |0011001\rangle + |1110000\rangle + |0100101\rangle + |1000011\rangle + |0010110\rangle \right]$

Single round of error correction

OUTLINE

□ Introduction to quantum error correction

- Classical vs quantum error correction
- Theory of quantum error correction
- Insights on fault-tolerance

- □ A continuous-variable alternative
 - Cat-qubits for protection against photon-loss
 - Nonlinear dissipation paving the way towards fault-tolerance

FAULT-TOLERANCE

Central idea: through operations, one should not introduce new error channels not taken into account by QEC. In particular, one should avoid propagation/amplification of errors

Example of parity measurements: simplest circuit to measure the parity $X_1X_3X_5X_7$ for the Steane code.

NOT FAULT-TOLERANT

Example of parity measurements: simplest circuit to measure the parity $X_1X_3X_5X_7$ for the Steane code.

A bit-flip of the ancilla qubit propagates to memory qubits.

NOT FAULT-TOLERANT

Example of parity measurements: simplest circuit to measure the parity $X_1X_3X_5X_7$ for the Steane code.

A bit-flip of the ancilla qubit propagates to memory qubits.

NOT FAULT-TOLERANT

Example of parity measurements: simplest circuit to measure the parity $X_1X_3X_5X_7$ for the Steane code.

A bit-flip of the ancilla qubit propagates to memory qubits.

TOWARDS A SOLUTION

Idea N1: transversal operations

- Each ancilla qubit couples to no more than one memory qubit.
- We readout more than the required information (ancillas get entangled to the codeword).

J. Preskill, Fault-tolerant quantum computation, 1997.

TOWARDS A SOLUTION

Idea N2: encoding ancillas

- The parity of the data qubits is mapped on the parity of the Shor state.
- An error in preparation of the Shor state can propagate.

J. Preskill, Fault-tolerant quantum computation, 1997.

TOWARDS A SOLUTION

Idea N3: verification of ancillas

- Parity measurement is launched if the 5th qubit is measured in 0.
- Otherwise repeat the preparation.

J. Preskill, Fault-tolerant quantum computation, 1997.

TOWARDS AN ERROR-CORRECTED QUBIT

Three main strategies for implementing a logical qubit:

- A register of physical qubits with full gate operations
- A fabric of physical qubits with nearest neighbor gates
- A superconducting resonator with non-linear drives, non-linear dissipation and photon parity monitoring. These services are provided by Josephson junctions.

Shor (1995) Steane (1996) Gottesman, Kitaev, Preskill (2001) Kitaev (2006) M.M. et al. (2014)

OUTLINE

□ Introduction to quantum error correction

- Classical vs quantum error correction
- Theory of quantum error correction
- Insights on fault-tolerance

- □ A continuous-variable alternative
 - Cat-qubits for protection against photon-loss
 - Nonlinear dissipation paving the way towards fault-tolerance

QUANTUM HARMONIC OSCILLATOR AND COHERENT STATES

Using classical control (e.g. laser, force), one can only make coherent displacements

SCHRÖDINGER CAT STATE FOR A HARMONIC OSCILLATOR

 $d = |2\beta| \Delta x$

SCHRÖDINGER CAT STATE FOR A HARMONIC OSCILLATOR

PHOTON LOSS: MAJOR DECAY CHANNEL OF A H.O.

$$\frac{d}{dt}\rho = \kappa D[a]\rho,$$
$$D[a]\rho = a\rho a^{\dagger} - \frac{1}{2}a^{\dagger}a\rho - \frac{1}{2}\rho a^{\dagger}a.$$

PHOTON LOSS: MAJOR DECAY CHANNEL OF A H.O.

$$\frac{d}{dt}\rho = \kappa D[a]\rho,$$
$$D[a]\rho = a\rho a^{\dagger} - \frac{1}{2}a^{\dagger}a\rho - \frac{1}{2}\rho a^{\dagger}a$$

Formulation with error channels: $\rho_{\delta t} = \mathcal{E}(\rho_0) = \sum_{l=0}^{\infty} \mathbf{E}_l \rho_0 \mathbf{E}_l^{\dagger}, \quad \mathbf{E}_l = \sqrt{\frac{\left(1 - e^{-\kappa \delta t}\right)^l}{l!}} e^{-\frac{\kappa \delta t}{2}a^{\dagger}a} a^l$

I.L. Chuang et al., PRA 56, 1997.

PHOTON LOSS: MAJOR DECAY CHANNEL OF A H.O.

$$\frac{d}{dt}\rho = \kappa D[a]\rho,$$
$$D[a]\rho = a\rho a^{\dagger} - \frac{1}{2}a^{\dagger}a\rho - \frac{1}{2}\rho a^{\dagger}a$$

Formulation with error channels:

$$\boldsymbol{\rho}_{\delta t} = \mathcal{E}(\boldsymbol{\rho}_0) = \sum_{l=0}^{\infty} \mathbf{E}_l \boldsymbol{\rho}_0 \mathbf{E}_l^{\dagger}, \quad \mathbf{E}_l = \sqrt{\frac{\left(1 - e^{-\kappa \delta t}\right)^l}{l!}} e^{-\frac{\kappa \delta t}{2} a^{\dagger} a} a^l$$

Up to first order in $\kappa \delta t$:

$$\boldsymbol{\rho}_{\delta t} = \mathbf{E}_{0} \boldsymbol{\rho}_{0} \mathbf{E}_{0}^{\dagger} + \mathbf{E}_{1} \boldsymbol{\rho}_{0} \mathbf{E}_{1}^{\dagger}, \ \mathbf{E}_{0} = e^{-\frac{\kappa \delta t}{2} a^{\dagger} a}, \ \mathbf{E}_{1} = \sqrt{\kappa \delta t} e^{-\frac{\kappa \delta t}{2} a^{\dagger} a} a$$

HARDWARE-EFFICIENT QUANTUM ERROR CORRECTION

□ Encoding and protecting information on a single cavity mode

□ Minimal QEC hardware : protecting a single high-Q cavity mode (memory), using a single qubit (providing non-linearity), one low-Q mode (entropy evacuation).

Idea:

$$0_{L}\rangle = |C_{\alpha}^{+}\rangle = \frac{1}{\sqrt{2}}(|\alpha\rangle + |-\alpha\rangle) \quad |1_{L}\rangle = |C_{i\alpha}^{+}\rangle = \frac{1}{\sqrt{2}}(|i\alpha\rangle + |-i\alpha\rangle)$$

HARDWARE-EFFICIENT QUANTUM ERROR CORRECTION

□ Encoding and protecting information on a single cavity mode

□ Minimal QEC hardware : protecting a single high-Q cavity mode (memory), using a single qubit (providing non-linearity), one low-Q mode (entropy evacuation).

Another possibility:

$$0_{L}\rangle = |C_{\alpha}^{-}\rangle = \frac{1}{\sqrt{2}}(|\alpha\rangle - |-\alpha\rangle) \quad |1_{L}\rangle = |C_{i\alpha}^{-}\rangle = \frac{1}{\sqrt{2}}(|i\alpha\rangle - |-i\alpha\rangle)$$

TO LIVE AND DIE IN A CAVITY

*Ofek et al., Nature 536, 441-445, 2016.

DEVICE

H. Paik *et. al.* PRL (2011),

G. Kirchmair et. al. Nature (2013)

MEASURING PHOTON-NUMBER PARITY

Bertet et al. PRL 89, 200402 (2002) Sun et al. Nature 511, 444-448 (2014)

$$|g\rangle|0\rangle \rightarrow |\psi\rangle = (c_g|g\rangle + c_e|e\rangle)|0\rangle$$

 $|\Psi_L\rangle = (c_g |C_{\alpha}^+\rangle + c_e |C_{i\alpha}^+\rangle)|g\rangle$

ALLOW POSTSELECTION?

Throwing out ~ 20% of data which are probably msmt. errors...

COMPARING TO SINGLE PHOTON ENCODING

TOWARDS FAULT-TOLERANT QC

Most important limitations:

- Energy decay.
- Uncorrected errors: dephasing due to combination of Kerr and decay.
- Non fault-tolerance: propagation of errors.

Rest of this talk: parametric methods to achieve fault-tolerance.

Idea: driven-dissipative mechanism to restrict the dynamics to 2- or 4-dimensional manifolds $\operatorname{Span}\{|\pm\alpha\rangle\}$ and $\operatorname{Span}\{|\pm\alpha\rangle,|\pm i\alpha\rangle\}$.

OUTLINE

□ Introduction to quantum error correction

- Classical vs quantum error correction
- Theory of quantum error correction
- Insights on fault-tolerance

- □ A continuous-variable alternative
 - Cat-qubits for protection against photon-loss
 - Nonlinear dissipation paving the way towards fault-tolerance

DRIVEN-DAMPED HARMONIC OSCILLATOR

Hamiltonian : $H = \varepsilon_1^* \hat{a} + \varepsilon_1 \hat{a}^\dagger$ loss operator : $\sqrt{\kappa_1} \hat{a}$

$$\alpha = \pm \sqrt{-2i\varepsilon_2} / \kappa_2$$

CHOICE OF QUBIT BASIS

$$|+_{z}\rangle = |C_{\alpha}^{+}\rangle = N_{+}(|\alpha\rangle + |-\alpha\rangle) = \sum c_{2n}|2n\rangle$$
$$|-_{z}\rangle = |C_{\alpha}^{-}\rangle = N_{-}(|\alpha\rangle - |-\alpha\rangle) = \sum c_{2n+1}|2n+1\rangle$$

A QUBIT WITHOUT PHASE-FLIPS

Phase-flip errors induced by reasonable (local in the phase space) errors are suppressed exponentially in $|\alpha|^2$.

CAT SQUEEZES OUT OF VACUUM

FUTURE: FULL QUANTUM ERROR CORRECTION

S. Mundhada et. al. in prepation.

COLLABORATORS

QUANTIC, Paris (Zaki Leghtas, Joachim Cohen, Lucas Verney, Raphael Lescanne)

Devoret's group, (Steven Touzard, Alexander Grimm, Shantanu Mundhada, Clarke Smith)

Schoelkopf's group, (Nissim Ofek, Andrei Petrenko)