# Anti-bunched photons emitted by a dc biased Josephson junction

<u>Chloé Rolland</u>, M. Westig, I. Moukharski, D. Vion, H. Le sueur, P. Joyez, C. Altimiras, P. Roche, D. Estève and Fabien Portier

collab.: J. Ankerhold, B. Kubala









### Context: quantum optics of quantum conductors

### Quantum conductors



### Atomic Physics: cavity QED



⇒ Many open questions (properties of the emitted radiation, strong feedback of coupling to electromagnetic modes) ⇒Excellent understanding (dressed atom formalism...)

### Simplifying the system



• Environment: single me



• Josephson junction polarized below the gap voltage 2 $\Delta$  SIS / Josephson Cooper pair eV

Junction

Ε









Introduction Measurements Single photon statistics Multiple photon emission Conclusion





### dc current only if photons can be absorbed



### Hamiltonian of the system



D. Averin, Y. Nazarov, and A. Odintsov, Physica B 165-166, 945 (1990) Ingold & Nazarov, arxiv:0508728 (1992)

### Hamiltonian of the system



D. Averin, Y. Nazarov, and A. Odintsov, Physica B 165-166, 945 (1990) Ingold & Nazarov, arxiv:0508728 (1992)

### Cooper pair and photon rates



$$H = hf_0 \left( a^{\dagger}a + 1/2 \right) - \frac{E_J}{2} \left( e^{i\varphi_J} + e^{-i\varphi_J} \right)$$
$$r = \pi \frac{Z_{res}}{R_Q}$$

Emission rates (from empty resonator):

$$\Gamma^{ph}(2eV = khf_0) = k \cdot \Gamma^{2e}(2eV = khf_0)$$
  

$$\Gamma^{2e}(2eV) = \frac{\pi E_J^2}{2\hbar} \sum_k \left| \langle k | e^{-2i\varphi_J} | 0 \rangle \right|^2 \delta(2eV - khf_0)$$
  

$$= \frac{\pi E_J^2}{2\hbar} \sum_k e^{-r} \frac{r^k}{k!} \delta(2eV - khf_0)$$

 $\rightarrow$  k photons / Cooper pair



ightarrow Large r favors multiphoton processes

D. Averin, Y. Nazarov, and A. Odintsov, Physica B 165-166, 945 (1990) H. Pothier, PhD dissertation (1991)

# Measurement setup



#### Hofheinz et al., PRL 106, 217005 (2011)

Introduction Measurements Single photon statistics Multiple photon emission Conclusion

### Current vs Power measurements



#### Cooper pair and photon mean rates match!

#### Hofheinz et al., PRL 106, 217005 (2011)

Introduction Measurements Single photon statistics Multiple photon emission Conclusion

## High impedance resonator



### **Resonator back-action?**

$$\Gamma^{2e}(2eV = hf_0) \propto \left| \langle n+1 | e^{-2i\varphi_j} | n \rangle \right|^2$$

successive tunnel events





V. Gramich et al, Phys.Rev.Lett. 111, 247002, 2013

# Anti-bunching

$$\Gamma^{2e}(2eV = hf_0) \propto \left| \left\langle 2 \left| e^{-2i\varphi_J} \right| 1 \right\rangle \right|^2 = 0 \text{ for } r=2$$

successive tunnel events





CP can't tunnel when 1 photon in the resonator !

+2e

V. Gramich et al, Phys.Rev.Lett. 111, 247002, 2013

### Photon statistics



### HBT measurement setup



# Second order correlator results $g^{(2)}(\tau)$

1,0 Anti-bunched photon emission 0,8  $g^{(2)}$ 0,6 • Time scale of correlations : photon lifetime in the cavity 0,4 0,2 0,0 -15 -10 -5 Time delay (ns) 1,00 increasing E 0,75 The correlation decreases with mean (0)<sub>(2)</sub> 0,50 population of the resonator 0,25 0.00 50 100 150 Emission rate (MHz)

300

10

250

15

0

5

200

# Multiple photon emission

• We can now observe up to 9-photon processes :

$$\Gamma^{ph}(2eV = khf_0) = E_J^2 \frac{r^k}{(k-1)!}$$



Does the emission follow theoretical predictions ?

# Multiple photon emission





# **Conclusion and perspectives**

#### **Summary**

dc-biased Josephson junction:

simple, compact and bright source of non-classical photons

#### What's next ?

- Higher coupling : perfect single photon source ?
- Transition to parametric resonance (photon pair bursts)
- Probe for other quantum devices ?

Thanks : Marc Westig, Iouri Moukharski, Denis Vion, Philippe Joyez, Carles Altimiras, Patrice Roche, Daniel Estève

# Thanks !



