On demand angle control in van der Waals heterostructures

<u>R. Ribeiro-Palau</u>*, T. Chari**, K. DeLello*, K. Shepard** and C.R. Dean*

*Physics and **Electrical Engineering Department Columbia University Graphene

Castro-Neto et al., Rev. Mod Phys. (2009)

Geim and Novoselov, Nature Materials (2009)

Graphene family	Graphene	
--------------------	----------	--

Graphene family	Graphene	hBN 'white graphene'	BCN	Fluorographene	Graphene oxide
--------------------	----------	-------------------------	-----	----------------	----------------

Graphene family	Graphene	hBN 'white gra	N Iphene'	BCN	Fluorographene	Graphene oxide
2D chalcogenIdes			Semiconducting dichalcogenides:		Metallic dichalcogenides: NbSe ₂ , NbS ₂ , TaS ₂ , TiS ₂ , NiSe ₂ and so on	
	1005 ₂ , 105 ₂	VIOS ₂ , VVS ₂ , IVIOSe ₂ , VVSe ₂		e_2 , WTe $_2$, e_2 and so on	Layered semiconductors: GaSe, GaTe, InSe, Bi ₂ Se ₃ and so on	

Graphene family	Graphene	hBN 'white graphene'		BCN	Fluorograph	ene	Graphene oxide	
2D chalcogenIdes	Mag Mg			Semiconducting dichalcogenides:		Metallic dichalcogenides: NbSe ₂ , NbS ₂ , TaS ₂ , TiS ₂ , NiSe ₂ and so on		
	MoS ₂ , WS ₂ , MoSe ₂ , WSe ₂ ZrS		MoTe ₂ , WTe ₂ , $_{2}$, ZrSe ₂ and so on		Layered semiconductors: GaSe, GaTe, InSe, Bi ₂ Se ₃ and so on			
2D oxides	Micas, BSCCO	MoO ₃ , WO ₃			Perovskite∹ LaNb₀O₂, (Ca,Sr	type:) ₂ Nb ₂ O ₁₀ ,	e: Ni(OH) ₂ , Eu(OH) ₂ and so o	
	Layered Cu oxides	TiO_2 , MnO_2 , V TaO_3 , RuO_2 and	V_2O_5 , d so on		Ti ₃ O ₁₂ , Ca ₂ Ta ₂ TiC	D_{10} and so on		Others

New van der Waals heterostructures

Improvement of graphene's quality

C.R. Dean et al., Nature Nanotech. (2010)

Mix of materials (as many as we want)

BN/Graphene/NbSe₂

A.W. Tsen et al., Nature Physics (2016)

Graphene/WS₂

Avsar et al., Nature Comms. (2015)

A. K. Geim and I. V. Grigorieva Nature (2013)

Interlayer spacing

Layer spacing – Coulomb drag measurements

M. Yankowitz et al., arXiv:1603.03244 (2015)

Crystallographic orientation (to modify electronic properties)

B. Hunt et al., Science (2013)

A. Mishchenko et al. Nature Nanotech (2014)

Mix of materials

A. K. Geim and I. V. Grigorieva Nature (2013)

Interlayer spacing

M. Yankowitz *et al.*, arXiv:1603.03244 (2015)

Some vocabulary

<u>Aligned crystals</u>: When two or more layers have the same crystal orientation (e.g. zigzag, armchair).

<u>Commensurate state</u>: When the orientation between layer give rise to a new lattice constant.

<u>Uncommensurate state</u>: when the layers are not aligned nor in a commensurate state.

<u>Moiré pattern</u>: periodic potential develop by two layers, with the same lattice structure, when these are close to alignment.

<u>Twistronics</u>: fancy name that appeared in Arxiv few months ago (arXiv:1611.00649v2).

Crystallographic orientation (Moiré superlattice)

C.R. Dean et al., Nature (2013); B. Hunt et al., Science (2013); L. Ponomarenko et al., Nature (2013)

Crystallographic orientation (Moiré superlattice)

C.R. Dean et al., Nature (2013); B. Hunt et al., Science (2013); L. Ponomarenko et al., Nature (2013)

Crystallographic orientation (Moiré remaining questions)

Origin of the energy gap

- Encapsulated devices do not show gap?
- Gapped devices without satellite peaks?

L. Wang et al., science (2015) – encapsulated
B. Hunt et al., Science (2013)
L. Ponomarenko et al., Nature (2013) - encapsulated
C.R. Woods et al., Nature Phys. (2014) - encapsulated

B. Hunt et al., Science (2013)

Layer alignment in fabrication (multiple devices)

L. Wang et al., Science (2015)

K. Kim et al. Nano Letters (2016)

NO Precise angle control impossible to measure more than one angle per sample

Inspiration

Van der Waals heterostructures + AFM manipulation

Graphite on graphene (device)

<u>New physics to study</u>:

- Monolayer bilayer transition
- Weakly couple bilayer
- Aligned transparent contacts to 2D materials

Graphite on graphite (at the same time in IBM)

E. Koren et al., Nature Nanotech (2016)

BN on graphene (friction)

BN on graphene (friction)

L. Wang et al., Science (2015)

Conclusions

Precise probe of long
 range commensurability
 between the lattices.

- First demonstration of *in-situ* modification of a 2D crystal band structure by controlled rotation of its angular orientation to an encapsulating crystal.

0.8

21.8°

25

13.2°

15

Rel. Angle (deg.)

 $(k\Omega-\mu m^2)$

 $\rho_{\rm c}$

Dean Lab

Tarun Chari Kursti DeLello
Thanks for your attention