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Experimental  motivation 
Minimum ESR linewidth for  
barely metallic n-type silicon 

Very long spin lifetimes for  
bulk n-doped GaAs  

Kikkawa, Awschalom, PRL 1998 

Zarifis, Castner, PRB 1987 



Maximum spin relaxation times around the MIT 

Very long spin lifetimes  
for bulk n-doped GaAs  

Kikkawa, Awschalom, PRL 1998 

 Dependence on Si  
 dopant density in GaAs 

R.I. Dzhioev et al., PRB 2002 

Maximum relaxation times  
at MIT nc ≈ 2×1016 cm-3 

larger than 100 ns  

?



Very long spin lifetimes: 45 – 270 ns  for  nc ≈ 1.8×1016 cm-3 (MIT) 

Spin noise spectroscopy for bulk n-doped GaAs  
in different transport regimes  

Oestreich, Haug, Römer,  
PRL 2005, 2008; PRB 2010  

localized regime 

metallic regime 

MIT region 



longest spin lifetimes for delocalized donor band states 

Mapping of spin lifetimes to electronic states in n-type  
GaAs  near the metal-insulator transition 

L. Schreiber, M. Heidkamp,  
T. Rohleder, B. Beschoten, 
and G. Güntherodt, arXiv:
0706.1884v1 

Connection between spin lifetime  
       and transport properties  



Spin relaxation time for GaAs and CdTe: 
experiments, theory and numerics 

CdTe 
Sprinzl et al 2010 

 

GaAs 

G. Intronati, P. Tamborenea, D. Weinmann, R.A.J., PRL 2012 



Model for impurity-band conduction  
        (Matsubara & Toyozawa) 



: random positions 
of sites m, n"

Problem of a random quantum network 

Diffusion given by the long-time behavior of the probability density  

E. Akkermans and G. Montambaux, Mesoscopic Physics (2007)  



extended states 

Extended and localized states in the impurity-band  

localized states 

nc
1/3 aB ≈ 0.25 

where cym0s ðcmsÞ represents the creation (annihilation) operator
for the ground state of the impurity at site m0 (m) with spin
projection s in the z-direction. The spin degree of freedom is
irrelevant for the MT model, but it will become crucial later. The
hopping matrix element is

tssm0m ¼/fm0 9Vm0 9fmS¼$V0 1þ
Rm0m

a

! "
exp $

Rm0m

a

! "
, ð2Þ

where fpðrÞ ¼fð9r$Rp9Þ, with fðrÞ ¼ 1=ðpa3Þ1=2 & expð$r=aÞ, and
a is the effective Bohr radius. The Coulombic potential produced
by the impurity placed at Rp is VpðrÞ ¼$V0ða=9r$Rp9Þ, where
V0 ¼ e2=ea and e stands for the static dielectric constant of the
semiconductor.

In order to characterize the electronic eigenstates in the impurity
band from the point of view of their extended or localized nature,
we obtain numerically the eigenvalues and eigenstates fei,cig of H0

for given configurations in which N impurities are randomly placed
in a three-dimensional volume. For each configuration we calculate
the energy-dependent density of states

DOS¼
X

i

dðe$eiÞ ð3Þ

and the inverse participation ratio of the state 9ciS

IPR¼
P

m9/fm9ciS94

ð
P

m9/fm9ciS92Þ2

" #$1

: ð4Þ

In Fig. 1 we present the impurity-averaged DOS and IPR for three
densities on the metallic side of the transition. The impurity band
develops around the E¼0 level of the isolated impurity in an
asymmetric fashion: the DOS exhibits a long low-energy tail while
the high-energy part is bounded by E¼1 (in units of V0). We verify
that the width of the impurity band increases with the doping
density. The numerically obtained DOS for different densities are
well reproduced by approximate methods like diagrammatic per-
turbation [5] or moment expansion [18]. The highest energy states
correspond to electronic wave functions localized on small clusters
of impurities. This clustering is known to happen in realistic systems

due to the lack of hard-core repulsion between impurities on the
scale of a [19,15].

Before continuing with the analysis of the numerical results
obtained from the MT model, we discuss some technical features
of the model and the difficulties that we face in trying to improve
upon it. Firstly, we notice that the chosen basis set is not
orthogonal. In principle, we can deal with this issue by writing
a generalized eigenvalue problem which includes the matrix of
orbital overlaps [20,21]. This procedure results in unphysical
high-energy states (with Eb1) that necessitate the inclusion of
hydrogenic states beyond the 1s orbital in order to be described
properly. However, care must be taken since enlarging the basis
set leads to the problem of overcompleteness. Fortunately, for the
properties we are interested in, the effects arising from non-
orthogonality are known to be small for moderate doping den-
sities, and that is why we will not consider them in the numerical
work, thus staying within the original MT model. Finally, another
drawback of the MT model is that the high-energy edge of the
impurity band overlaps with the conduction band, which starts
at V0=2 (the effective Rydberg) and is not included in the MT
description. As seen in Fig. 1 the DOS beyond V0=2 is always very
small, and therefore we can ignore the effects that the hybridiza-
tion of the bands would yield in a more complete model.

The determination of the mobility edges from the size scaling
of Fig. 1 is not straightforward. This difficulty arises from the
heavily structured DOS of the MT model [21]. At low energy the
small values of the DOS translate into a poor statistics for feasible
sizes. In the high-energy part of the impurity band, the separation
between the curves corresponding to different values of N is
masked by the small values of the IPR/N.

For the highest density (top panel) the IPR/N exhibits a
relatively flat region at intermediate energies, which is approxi-
mately independent of N for the two largest system sizes. The
lower mobility edge can be located roughly at E' 3:5, where the
latter curves separate. For lower impurity densities (lower panels)
the previous analysis becomes increasingly demanding in terms
of system sizes. We see that the flat region of IPR/N shrinks from
which we can conclude that the lower mobility edge is shifting
toward higher values of E.

The study of spin relaxation in doped semiconductors with
densities close to that of the MIT calls for a generalization of the
previously discussed MT model that incorporates spin–orbit cou-
pling. Such an extension was done in Ref. [15], where a spin-flip
term

H1 ¼
X

mam0 ,s
tssm0mcym0scms ð5Þ

was added to H0 ðs ¼$sÞ. Similar to the spin-conserving case,
we have

tssm0m ¼
X

pam

/ ~cm0s 9Vp9 ~cmsS: ð6Þ

The wave function ~cms is an impurity spin-admixed (ISA) state with
an envelope part fmðrÞ and a lattice-periodic part (conduction band)
which has a small spin admixture. In Ref. [15], the expression of the
matrix elements of Eq. (6) within an 8-band Kane model has been
obtained. Here, we evaluate the three-center matrix elements
numerically.

Spin–orbit coupling is known to favor the delocalization of
disordered systems in two dimensions. In what follows we repeat
the previous analysis, performed on the MT model, for its spin–
orbit generalized counterpart.

The matrix element (6) is proportional to the effective spin–orbit
coupling l which for a zinc-blende semiconductor can be orders of
magnitude larger than the one of vacuum l0C3:7& 10$6 Å

2
.

For the case of GaAs treated in Ref. [15], lC$5:3 Å
2

[22]. Still, the

Fig. 1. Density of states (DOS, thick line and right scale) and inverse participation
ratio (IPR, left scale) for three different densities on the metallic side of the metal–
insulator transition, obtained through impurity averaging in the Matsubara–
Toyozawa model. The solid, dashed and dotted curves of IPR/N are for N¼2744,
4096 and 5832, respectively, and the vertical lines indicate the Fermi energy.

G.A. Intronati et al. / Physica B 407 (2012) 3252–3255 3253

n > nc 



Impurity band: one vs. many particle models 

DOS 

M&T model (one particle) 

CRITICAL EXPONENT OF METAL-INSULATOR . . . PHYSICAL REVIEW B 89, 205108 (2014)

For numerical purpose we replace the continuous effective
medium with a cubic finite difference grid and Eq. (8) with
a next-nearest neighbor finite difference approximation. In
the LDA the resulting matrix equations are sparse and the
eigenvectors and eigenvalues of the occupied states can be
found using iterative techniques [23]. The potential due to
the impurities and the Hartree potential are found using fast
Fourier transform. The self-consistent solution of the equations
is found iteratively starting from an initial guess for the
Kohn-Sham eigenfunctions. For details the reader is referred
to Ref. [18].

III. DENSITY OF STATES

We take the density of Kohn-Sham eigenvalues as an
approximation to the single particle density of states. For the
unphysical situation that the donors are regularly arranged on
a simple cubic lattice, we have found that the impurity band
merges with the conduction band at Nd ≈ 1.59 × 1018 cm−3

(Fig. 2). The average DOS for the more realistic random
distribution of donors is shown, for several concentrations,
in Fig. 3. In this case, the bands merge at a much smaller
concentration of Nd ≈ 0.42 × 1018 cm−3. We should note this
value is not directly comparable with experiment for two
reasons. First, we have assumed complete spin polarization.
Second, the LDA is known to underestimate band gaps.
Nevertheless, we can be sure that the MIT we observe below
occurs after the impurity and conduction bands have merged.

In the metallic regime an anomaly is expected in the density
of states at the Fermi level. This anomaly is then expected to
develop into a pseudogap (called the Coulomb gap) on passing
far into the insulating regime [24]. This behavior has been seen
clearly in a recent numerical analysis using the Hartree-Fock
method of a lattice model incorporating both disorder and
Coulomb interactions [25]. For the model we consider here,
the Coulomb gap will not be observable until after the impurity
band starts to merge with the conduction band. For lower
concentrations the impurity band is fully occupied (full spin
polarization) and separated from the conduction band by a
gap. For the lowest concentration shown in Fig. 3, which

FIG. 2. The density of states for simple cubic systems. Points
indicated by (i′), (ii′), and (iii′) are Fermi levels for Nd = 0.87, 1.59,
and 2.26 × 1018 cm−3, respectively.

FIG. 3. The average density of states for a random spatial
distribution of donor impurities. Points indicated by (i), (ii), and
(iii) are Fermi levels for Nd = 0.42, 0.86, and 1.33 × 1018 cm−3,
respectively.

corresponds to the concentration at which the merging of
the impurity and conduction band begins, a feature which
we associate with the Coulomb gap is visible at the Fermi
level. For the next highest concentration a dip but not a
pseudogap can be seen. At this concentration the highest
occupied Kohn-Sham orbital is still localized. For the highest
concentration shown, which corresponds to a concentration
where the highest occupied Kohn-Sham orbital is delocalized,
no anomaly is discernible.

IV. MULTIFRACTAL FINITE SIZE SCALING ANALYSIS

We observe a localization-delocalization transition of the
highest occupied Kohn-Sham eigenfunction as a function of
donor concentration. Before describing this, however, we now
turn to the multifractal finite size scaling analysis. We divide
the L × L × L system into boxes of linear size l. We define a
coarse grained intensity {µk} by

µk ≡
∫

k

d3r|ψ(&r)|2. (16)

The subscript k indexes the (L/l)3 boxes. To analyze the
transition we focus on the intensity distribution of the highest
occupied Kohn-Sham orbital. We define a generalized inverse
participation ratio by

Rq ≡
∑

k

(µk)q (17)

and the related quantity obtained by its differentiation with
respect to the exponent q,

Sq ≡
∑

k

(µk)q ln µk. (18)

Generalized multifractal exponents τ̃q and α̃q are defined from
these:

τ̃q ≡ ln〈Rq〉
ln λ

, α̃q ≡ 〈Sq〉
〈Rq〉 ln λ

. (19)

205108-3

Harashima & Slevin 
 (density functional) 

Economou (Hubbard + mean field) 



Effective Hamiltonian for zinc-blende semiconductors 

 k  : momentum operator    

(GaAs) 

 extrinsic coupling: 

(GaAs) 

 intrinsic coupling (Dresselhaus): 



Hopping matrix:"

spin-independent:"

spin-dependent:"
(Dresselhaus)" cyclic permutations"

Dresselhaus spin-orbit coupling dominant for semiconductors with zinc-
blende crystal structure  (G. Intronati, P. Tamborenea, D. Weinmann, R.A.J., PRL 2012) 

Impurity band with spin-orbit interaction 

4

where

P =
1p
2

 

1 �i
1 i

!

. (17)

It will be later useful to establish the transformation prop-
erties of the matrices V(r) and Ṽ(k) under spatial inversion.
The transformation r ! �r is not a symmetry of the zinc-
blende structure. While the spin, being an angular moment,
is invariant under spatial inversion, the orbital part is changed
according to V0(�r) = V0(r) and Cµ(�r) = �Cµ(r). Sim-
ilarly, Ṽ0(�k) = Ṽ0(k) and C̃µ(�k) = �C̃µ(k). Therefore,
both V(r) and Ṽ(k), fulfill the following property (that we
refer to as ’para-odd’): under the operation of spatial inver-
sion, the two diagonal matrix elements are interchanged and
the two o↵-diagonal matrix elements change their sign. It is
easy to show that if a 2 ⇥ 2 matrix is para-odd, any integer
power of it inherits this property. Moreover, the product of a
para-odd matrix times the one obtained upon space inversion
results in a diagonal matrix proportional to the 2 ⇥ 2 identity
matrix I2. For instance,

V(�r)V(r) = c(r) I2 , (18a)
Ṽ(�k)Ṽ(k) = d(k) I2 (18b)

where c(r) = V2
0(r)+C2

x(r)+C2
y(r)+C2

z (r) and d(k) = Ṽ2
0(k)+

C̃2
x(k) + C̃2

y(k) + C̃2
z (k) are scalar quantities. Furthermore, we

notice that

V†(r) = V(�r) , (19a)
Ṽ†(k) = Ṽ(k) . (19b)

Since, due to Eqs. (18a,19a), c�1/2(r)V(r) is a unitary ma-
trix,V(r) belongs to the class of generalized unitary matrices,
whereas Ṽ(k) is a Hermitian matrix.

III. PROBABILITY OF QUANTUM DIFFUSION

The central quantity – the intensity propagator � – which
we will use in this paper to characterize charge and spin dif-
fusion is defined as follows

��
0
1�
0
2,�1�2 (",!, r) =

X

m0
g
�01,�1(+)
m0,m ("1)g�2,�02(�)

m,m0 ("2)� (r � Rm0m)

(20)
in terms of the retarded (advanced) one-particle Green func-
tion

g�
0,�(±)

m0,m (") = hm0�0
�

�

�

�

�

1
z± �H

�

�

�

�

�

m�i . (21)

We note "1,2 = " ± ~!/2, z± = " ± i⌘, and ⌘ an infinitesi-
mal positive quantity. The product of two (one-particle) Green
functions appearing in the definition (20) warrants the denom-
ination of two-particle Green function for the intensity propa-
gator � (also called particle-hole Green function and particle-
hole vertex function52–54). The over-line in Eq. (20) stands
for the average over the impurity configurations, assuming

the position of the N impurities to be random variables uni-
formly distributed on the volume ⌦. Due to the translational
invariance obtained after impurity average, the propagator �
is independent of the choice of the initial site m in Eq. (20).

From the intensity propagator �, our physical quantities of
interest can be extracted as follows: we consider as initial state
a wave-packet

| ",m,�i = A
X

⌫

h�⌫ | m�i exp
"

� ("⌫ � ")2

4�2
"

#

|�⌫i , (22)

describing an electron with energy " and spin � at site m,
where {|�⌫i} is a complete basis of H with corresponding
eigenenergies "⌫, �" is the energy-width of the wave-packet,
and A is a normalization constant. We are then interested in
the impurity-averaged probability

P�0�(", t, r) =
X

m0
hm0�0|%t |m0�0i� (r � Rm0m) (23)

to find, at a later time t > 0, the electron with spin �0 and
at distance r from the initial site, where the density oper-
ator %t = Ut%0U† denotes the state that results from the
evolution Ut = exp [�iH t/~] of the initial density operator
%0 = | ",m,�ih ",m,�| at time t = 0.

The probability distribution governing the spatial (charge)
di↵usion is then given by

P�(", t, r) =
X

�0=±�
P�0,�(", t, r) , (24)

which, in general, depends on the direction of the initial spin
�. This dependence, however, vanishes in the limit of large
distances r (and large times t), where the spatial dynamics
is described by an isotropic and spin-independent di↵usion
equation (as shown in Sec. V F below).

The spin probability is obtained from

P�0,�(", t) =
Z

dr P�0,�(", t, r) . (25)

At large times t, the spin probability approaches its equilib-
rium value 1/2 (exponentially in t), and the corresponding ex-
ponent defines the spin relaxation rate (see Sec. V D).

As shown in Appendix A, the probability P�0�(", t, r) is
proportional to the Fourier transform of the intensity propa-
gator �:

P�0�(", t, r) =
ni

⇢(")
~

2⇡

Z +1

�1
d! e�i!t ��

0�0,��(",!, r) , (26)

where ⇢(") denotes the impurity-averaged density of states.
The latter, in turn, is obtained as the imaginary part

⇢(") = �ni

⇡
Im

n

G�,�(+)(")
o

(27)

of the local average Green function

G�0,�(±)(") =
*

m�0
�

�

�

�

�

1
z± �H

�

�

�

�

�

m�
+

. (28)

The hopping matrix is “para-odd” 
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Charge and spin di↵usion on the metallic side of the metal-insulator transition: a self-consistent
approach

Thomas Wellens1 and Rodolfo A. Jalabert2, 3

1Physikalisches Institut der Albert-Ludwigs-Universitat, Hermann-Herder-Str. 3, D-79104 Freiburg, Germany
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3Institut de Physique et Chimie des Matériaux de Strasbourg, Université de Strasbourg,
CNRS UMR 7504, 23 rue du Loess, BP 43, 67034 Strasbourg Cedex 2, France

We develop a self-consistent theory describing the spin and spatial electron di↵usion in the impurity band
of doped semiconductors under the e↵ect of a weak spin-orbit coupling. The resulting low-temperature spin-
relaxation time and di↵usion coe�cient are calculated within di↵erent schemes of the self-consistent frame-
work. The simplest of these schemes qualitatively reproduces previous phenomenological developments, while
more elaborate calculations provide corrections that approach the values obtained in numerical simulations. The
results are universal for zinc-blende semiconductors with electron conductance in the impurity band, and thus
they are able to account for the measured spin-relaxation times of materials with very di↵erent physical param-
eters. From a general point of view, our theory opens a new perspective for describing the hopping dynamics in
random quantum networks.

PACS numbers: 72.25.Rb, 05.60.Gg, 72.20.Ee, 76.30.Pk

I. INTRODUCTION

The low-temperature spin-relaxation time (⌧s) of n-doped
semiconductors presents a maximum for doping densities near
that of the metal-insulator transition (MIT)1–8. This experi-
mental observation is particularly intriguing as it encompasses
both, the rich physics of spin-orbit coupling in semiconduc-
tors and a paradigmatic quantum phase transition. On the one
hand, the spin dynamics in di↵erent semiconductor-based sys-
tems is relevant from the fundamental point of view, as well as
for potential applications of spintronics and quantum informa-
tion technologies9,10. On the other hand, despite a substantial
research e↵ort, the MIT remains one of the most challenging
open problems in condensed matter physics11–13.

While the mechanisms behind spin relaxation were
promptly identified for the regime of high temperatures or
for doping densities far away from the critical one4,14,15, the
understanding of the low-temperature spin-relaxation close to
the MIT required a sustained theoretical e↵ort16–20. On the
metallic side of the transition (for impurity densities ni slightly
larger than the critical one nc) the Dresselhaus spin-orbit cou-
pling was identified as the source of the spin-relaxation in the
case of zinc-blende semiconductors. In particular, it was pro-
posed that when the electron conduction is in the impurity
band (nc<ni<nh), the spin-relaxation rate is given by20,21

1
⌧s
= 0.36

�2

a6V0~
N1/2

i . (1)

� is the material-dependent Dresselhaus coupling
constant9,22–24, while the other parameters in Eq. (1)
depend on the nature of the impurity states: the e↵ective Bohr
radius (a), the binding energy (V0/2), and the dimensionless
impurity density (Ni = nia3). The hybridization density nh
marks the impurity concentration beyond which there is a
considerable overlap between the impurity and conduction
bands.

The form (1) of the relaxation rate is quite general. In the
above-specified density interval, it applies to any zinc-blende

semiconductor, with the possible exception of narrow-gap ma-
terials. Indeed, it has been shown to give good account, within
the experimental uncertainties and the limited knowledge of
some material parameters, of the spin-relaxation measured in
GaAs and CdTe, despite the very di↵erent material constants
of these two semiconductors. For instance, the Mott criterion
for the MIT setting the critical dimensionless impurity density
Nc = nca3 ' 0.017, leads to nc = 2⇥1016 cm�3 (9⇥1016 cm�3)
for GaAs (CdTe), and there are two orders of magnitude dif-
ference between the corresponding values of ⌧s for these two
cases3–8.

Eq. (1) has been analytically derived and it is in good
agreement with numerical simulations20. Both theoretical ap-
proaches (analytic and numerical) are based on a generaliza-
tion of the well-known Matsubara-Toyozawa (MT) model25,
describing the di↵usion of non-interacting electrons through
randomly distributed impurity sites, so as to include spin-
flipping hopping terms19,26. In the numerical approach, the
spin-relaxation time is extracted from the evolution of initial
states with a well-defined spin projection. The weakness of
the spin-orbit coupling and the finite system sizes that can be
handled require the use of delicate extrapolations and a finite-
size scaling analysis. In the analytic formulation, the spin-
relaxation rate is obtained from the di↵usive accumulation of
spin rotation angles as the electron jumps between impurity
centers. Such a phenomenological approach needs to be put
on a firm basis as a well-controlled approximation that can be
extended in a systematic way in order to accurately describe
various parameter regimes.

The present work addresses the above-mentioned task and
develops a systematic self-consistent diagrammatic perturba-
tion approach to obtain the long-time charge and spin dynam-
ics in a disordered network of impurity sites. The phenomeno-
logical result of Eq. (1) is qualitatively recovered using a sim-
ple self-consistent approximation in a locator expansion of the
self-energy which can be analytically solved. In a second ap-
proximation, we include diagrams describing loops of arbi-
trary length, which can be shown to give the dominant contri-

G. Intronati, P. Tamborenea, D. Weinmann, R.A.J., PRL 2012 
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FIG. 9: Diagrams for the irreducible component U of the intensity operator including repeated scattering.

by switching to Fourier space. The second term of the inte-
grand is diagonal, since F (±)(",�r) F (±)(", r) and A(±)(", r)
are diagonal matrices. Therefore the approximation (85) for
⌃(±)(") yields a scalar quantity, in agreement with the general
symmetry principles discussed in Sec. IV.

Like in the previous section, we solve the self-consistent
equation (85) for ⌃(+)(") by neglecting the influence of the
spin-orbit interaction. Within such an approximation we re-
place V(r) by V0(r) and F (+)(", r) by F (+)

0 (", r) (the latter
defined through Eq. (79) and with an explicit form given by
Eq. (C5) of Appendix C). Solving Eq. (85) by a numerical
root solver (or by iteration, which, however, does not con-
verge in all cases), we find that a unique solution for ⌃(+)(")
with negative imaginary part exists if Ni � 0.013. The result-
ing density of states, represented by the solid lines in Fig. 3(a),
turns out to be correctly normalized, i.e.

R

d"⇢(") = ni. For
Ni < 0.013, we find multiple solutions for ⌃(+)(") with cor-
respondingly unnormalized densities of states. We therefore
cannot apply the RSCSCA for Ni < 0.013. This is, how-
ever, not a serious drawback, since those values lie below the
critical density Nc = 0.017 mentioned in the introduction,
where the non-interacting model adopted in this paper be-
comes invalid. Furthermore, we note that the low-density limit
of the non-interacting model can be addressed by Elyutin’s
approach27, which is very similar to our RSCSCA, but using
the bare hopping amplitude instead of the renormalized one.

Turning back to the density of states shown in Fig. 3(a), we
see that di↵erences with respect to the LCSCA ⇢(") are notice-
able in the high-energy part of the impurity band. The RSC-
SCA ⇢(") results in a smoother maximum and does not exhibit
a sharp high-energy cuto↵. These features approach the ana-

lytical results of the quantum numerical calculations26,37, ex-
cept for energies " > V0. The extension of the impurity band
beyond V0 is an unphysical result, as it can be proved that for
the spinless version of the model (5a)-(5c), all eigenvalues are
bounded by V0. However, as it has been argued before, the
small imprecisions at the high end of the impurity band are
generally unimportant concerning measurable quantities.

B. Irreducible component of the intensity propagator

When applying to the RSCSCA self-energy of Fig. 8 the
recipe for the irreducible component U of the intensity propa-
gator, we have three kinds of contributions. Firstly, those com-
ing from the first term yield the insertion U of Fig. 7 (diagram
(a) in Fig. 9). Secondly, there are those obtained by removing
one of the Green functions corresponding to the repeatedly
visited sites. In particular, the second term in the expansion
for ⌃(±)(") yields the diagrams (b)-(d) of Fig. 9. The dots after
diagram (d) stand for the additional contributions obtained by
applying the previous procedure to the subsequent terms of the
expansion for ⌃(±)("). We note that the final site is identical to
the initial site in diagram (c), but not in (b) and (d). Finally,
we have to consider the contributions obtained by removing
one of the Green functions appearing inside the renormalized
hopping amplitudes (thick lines). Those arising from the sec-
ond term in the expansion of the self-energy are the diagrams
(e)-(h), while the dots after diagram (h) stand for contribu-
tions generated by the following terms. In this third kind of
diagrams the final site (at the left-hand side of the diagrams)
is not identical to one of the two repeatedly visited sites.

Diagrams like those of j Fig. 9(b),(d) (Fig. 9(c)), where the removed Green function does not (does) correspond to the initial
site, can be written as

U(n, j)
b�d (",!, r) = ni

h

A(+) ("1, r)
i( j�1)/2 h

A(�) ("2, r)
i(n� j)/2 F (+) ("1, r) ⌦ F (�) ("2, r) , (86a)

U(n, j)
c (",!, r) = ni �(r)

1
G(+) ("1) G(�) ("2)

h

A(+) ("1, r)
i j/2 h

A(�) ("2, r)
i(n+1� j)/2

, (86b)

respectively. The odd index n � 3 stands for the number of internal Green functions in the ⌃-diagram (i.e. n + 1 is order of the

13

+. . .=� + +

FIG. 8: Diagrams for the self-energy including repeated scattering.

Although this di↵erence is not expected to strongly modify the
spin-relaxation time in the metallic regime19, it may explain,
together with the uncertainty due to numerical finite-size ef-
fects, the remaining deviation between theory and numerics in
Fig. 5.

E. Spatial di↵usion

Neglecting the e↵ect of the spin-orbit coupling for the
spatial di↵usion, in accordance with the same approxima-
tion (� ⌧ a3V0) used above for the numerical evaluation
of the density of states, we see that only the matrix element
U++,++(", 0, r) contributes in the general expression (60) of
the step-length distribution. We thus obtain

p(", r) = ni
�

�

�G(+)(")F (+)
0 (", r)

�

�

�

2
, (83)

where F̃ (±)
0 (",k) has been defined in (79). We recover, again,

a classical random walk, since p(", r) � 0 for all r. The step-
length distribution results from a superposition of three expo-
nentials with di↵erent decay constants, see Eq. (C5). Such a
behavior also di↵ers from that of the step-length distribution
predicted by the Boltzmann equation, which contains only a
single exponential decay characterized by the scattering mean
free path.

The di↵usion coe�cient emerging from Eqs. (59,61,83) is
presented as a function of the energy within the impurity band
in Fig. 3(c) (dashed lines). These results reproduce those of
Ref. 25 when using the di↵usion approximation for the con-
ductivity � = e2⇢("F)D("F).

VIII. REPEATED-SCATTERING-CORRECTED
SELF-CONSISTENT APPROXIMATION

A. Self-energy and density of states

As discussed in Sec. VII A, the Matsubara-Toyozawa ap-
proximation for the density of states25 (equivalent to the splin-

less version of the LCSCA) gives a relatively good account of
the numerically obtained ⇢("), up to some deviations in the
high-energy part of the impurity band. While it can be ar-
gued that these deviations are not significant when consider-
ing physically measurable quantities, the search for a more
accurate description of the density of states for the spinless
version of the model defined by Eqs. (5a)-(5c) beyond that of
Ref. 25 is an interesting task31–37.

In this section we take the self-consistent approximation
to a more complete description by including cross diagrams
that describe the repeated scattering from selected impurities.
Our repeated-scattering-corrected self-consistent approxima-
tion (RSCSCA) is mostly relevant for low impurity densities.
When compared with the LCSCA, it provides a substantial
change of the density of states in the high-energy part of the
impurity band. Except for very small impurity densities, it
has very little e↵ect on the di↵usion coe�cient or the spin re-
laxation rate, thus sustaining the LCSCA results for these two
physical quantities.

The simplest way to take into account the repeated scat-
tering from a given set of impurities is to select just a pair.
Such processes are dominant in the limit of very low impurity
densities27. Therefore, the self-energy of Fig. 6(a) can be gen-
eralized to that of Fig. 8, where the hopping amplitudes are
the renormalized ones (Fig. 6(b) and Eq. (78)).

The expansion for ⌃(±)(") in Fig. 8 starts with the contri-
bution (77) of the LCSCA, and the following terms represent,
for each position r of the intermediate impurity, a geometric
series with ratio

A(±)(", r) =
h

G(±)(")
i2 F (±)(",�r) F (±)(", r) , (84)

describing the hopping (with the renormalized hopping am-
plitude) from one impurity to another one located at distance
r and back again. As shown in VII B, F (±)(",�r) F (±)(", r)
is proportional to the unit matrix, and therefore A(±)(", r) is
also a scalar quantity. Summing the geometric series, the self-
energy represented in Fig. 8 can be expressed as

⌃(±)(") = ni G(±)(")
Z

dr

0

B

B

B

B

B

B

B

B

@

V(�r) F (±)(", r) +

h

G(±)(")
i2 hF (±)(",�r) F (±)(", r)

i2

1 � A(±)(", r)

1

C

C

C

C

C

C

C

C

A

. (85)

The first term of the integrand, V(�r, z) F (±)(", r), leads to a diagonal contribution upon integration, as can be shown
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U(�, �, r)0=

FIG. 4: Irreducible component of the intensity propagator within
the SSCA, obtained by applying the ’cut and fold’ procedure to the
self-consistent self-energy of Fig. 1(b). The solid horizontal upper
(lower) line stands for the hopping amplitude matrix V(r) (V⇤(r)),
the dotted vertical lines indicate identical sites.

B. Irreducible component of the intensity propagator

The recipe for constructing the irreducible component U of
the intensity propagator from the corresponding diagram rep-
resenting ⌃ (see App. B) yields the diagram of Fig. 4, which
can be expressed as

U�
0
1�
0
2,�1�2 (",!, r) = niV�01�1 (r)

⇣

V�02�2 (r)
⌘⇤
. (68)

That is, U(",!, r) = niV(r) ⌦ V⇤(r) and the matrix U in
Fourier space can be written as

Ũ(",!,q) = ni

Z

dk
(2⇡)3 Ṽ(k+) ⌦ Ṽ⇤(k�) , (69)

where k± = k ± q/2.

C. Spin relaxation rate

The spin dynamics is described by the case of q = 0, where
the integral of Eq. (69), can be readily done. The resulting
Ũ(",!, 0) respects the form given in Eq. (40), with

ũ1(",!) = ni

Z

dk
(2⇡)3



Ṽ2
0(k) +

�

�

�C̃z

�

�

�

2 (k)
�

= 7⇡a3niV2
0 +

2⇡ni

21a3 �
2 (70a)

ũ2(",!) = ni

Z

dk
(2⇡)3



�

�

�C̃x

�

�

�

2 (k) +
�

�

�C̃y

�

�

�

2 (k)
�

=
4⇡ni

21a3 �
2 (70b)

Inserting Eq. (70b) into the general expression (50), we ob-
tain the energy-dependent spin relaxation rate ⌧�1

s (") (dotted
lines in Fig. 3(b)), which follow a semi-circle law due to the
proportionality with the density of states. For uncompensated
semiconductors the impurity band is half-filled (the Fermi en-
ergy is "F = "00 = 0), and assuming � ⌧ a3V0 we have

1
⌧s(0)

=
16
21

r

⇡

7
�2

a6V0~
N1/2

i ' 0.51
�2

a6V0~
N1/2

i . (71)

Comparing Eqs. (1) and (71), we notice that the SSCA for the
spin relaxation rate reproduces the phenomenological result,
up to a numerical factor. The di↵erence between the pref-
actors of both equations is not surprising, since in the phe-
nomenological approach some of the numerical constants are
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FIG. 5: Spin-relaxation time at the Fermi energy ⌧s("F), for a half-
filled impurity band, as a function of the dimensionless impurity den-
sity Ni = nia3 for the three approaches developed in this work: the
SSCA (Eq. (71), dotted), the LCSCA (dashed), and the RSCSCA
(solid). The red dots are the numerical results of Ref. 20. The theory
only applies to the interval 0.017 < Ni < 0.07 (i.e. between the crit-
ical density Nc ' 0.017 of the Mott transition and the hybridization
density Nh ' 0.07); the lowest density results are presented to show
the importance of the repeated-scattering correction in this regime.

arbitrary. The Ni-dependence of the SSCA spin-relaxation
time ⌧s(0) is presented in Fig. 5 (dotted line), together with
the numerical results of Ref. 20 (red dots) and those of the
approaches to be developed in the sequel.

D. Spatial di↵usion

The spatial di↵usion coe�cient is obtained from Eq. (59)
with step-length distribution

p(", r) =
ni

↵

⇣

V2
0(r) + C2

x(r) + C2
y(r) + C2

z (r)
⌘

(72)

and time

⌧(") =
~ni

2↵⇡⇢(")
. (73)

Since p(", r) � 0 for all r, the spatial di↵usion dynamics de-
scribed by the SSCA can be interpreted as a classical random
walk. Note, however, that p(", r) di↵ers from the step-length
distribution exp(�r/`")/(4⇡r2`") of a random walk with mean
free path `", as described by the classical Boltzmann equation.
This is not surprising, since the Boltzmann equation applies
to continuous systems whereas we are dealing with a discrete
network of impurities. Using the expressions (14) for Ṽ0(k)
and C̃µ(k), the di↵usion constant results as

D(") =
 

27a5

2
V2

0 +
4

3a
�2

!

⇡2⇢(") . (74)

In the simple scheme of the SSCA, the di↵usion constant and
the density of states can be analytically calculated, and we

numerics" LCSCA"
SCSA"

RSCSA"SCSA"

T. Wellens & R.A.J.,  
PRB 94, 144209 (2016) 



•  Spin-orbit interaction (Dresselhaus) in the  impurity band 
of n-doped zinc-blend semiconductors. 

•  Numerics, phenomenological and self-consistent theories. 

•  Resulting spin relaxation times in good agreement with 
existing experiments in GaAs and CdTe.    

•  Self-consistent theory for the spin and spatial diffusion:  
-  average of one-particle and two-particle Green functions;  
-  SSCA: simplest self-consistent approximation scheme,  

 reproduces the phenomenological results;  
-  LCSCA and RSCSCA: loop-corrected and crossed terms, 
     good agreement with the numerical results.  

Conclusions 

G. Intronati, P. Tamborenea, D. Weinmann, R.A.J., PRL 2012 
T. Wellens R.A.J., PRB 94, 144209 (2016) 



Insulating  regime (below nc) 
- Deeply localized regime: Hyperfine interaction 

ωp : spin precession frequency in the local field 

 τc : dwell time in the localization domain 

Spin lifetime  τs  
 motional  
narrowing 

Normal diffusion: 

diffusion of the spin vector 

 γ : spin rotation angle of total spin of  
two electrons during exchange process 

- Localized regime: Anisotropic exchange 



Metallic  regime (above nc) 
- D’yakonov-Perel mechanism: 

OK for electrons in the conduction band but  
     not for electrons in impurity band 

spin-orbit interaction & absence of inversion symmetry 

 τp(EF) : momentum relaxation time  (impurity scattering) 

electrons see k-dependent effective B field 

 motional narrowing 



Impurity states and impurity band  



MIT in doped semiconductors 

nh ≈ 8×1016 cm -3	

Impurity band conduction for GaAs:  nc < n < nh        

nc ≈ 2×1016 cm-3	


Introduction to Metal-Insulator Transitions

is a continuous (second order) phase transition (Paalanen, Rosenbaum, Thomas and
Bhatt, 1982), which bears many similarities to conventional critical phenomena. This
important observation has sparked a veritable avalanche of experimental (M. A. Paala-
nen, 1991; Sarachik, 1995) and theoretical (Wegner, 1976; Wegner, 1979; Abrahams,
Anderson, Licciardello and Ramakrishnan, 1979; Scha↵er and Wegner, 1980) works,
most of which have borrowed ideas from studies of second order phase transitions.
Indeed, many experimental results were interpreted using scaling concepts (Lee and
Ramakrishnan, 1985), culminating with the famed scaling theory of localization (Abra-
hams, Anderson, Licciardello and Ramakrishnan, 1979), and the subsequent extensions
to incorporate the interaction e↵ects (Finkel’stein, 1983; Finkel’stein, 1984; Castellani,
Castro, Lee and Ma, 1984; Belitz and Kirkpatrick, 1994).

Fig. 1.14 Critical behavior of the conductivity extrapolated to T ! 0 for uncompensated

Si:P (Rosenbaum, Andres, Thomas and Bhatt, 1980). Sharp power-law behavior with critical

exponent µ ⇡ 1/2 is extending over a surprisingly large concentration range. Finite values of

the conductivity much smaller then �
M

(shown by arrow) are observed close to the transition.

Introduction to Metal-Insulator Transitions

semiconductors which led to the discovery of the transistor. More recent e↵orts drifted
to structures of reduced dimensionality and devices such as silicon MOSFETs (metal-
oxide-semiconductor field-e↵ect transistors), which can be found in any integrated
circuit.

Fig. 1.2 Quantum critical behavior near a metal-insulator transition. Temperature depen-

dence of the resistance for di↵erent carrier concentrations is shown schematically in (a).Well

defined metallic or insulating behavior is observed only at temperatures lower than a char-

acteristic temperature T < T ⇤ that vanishes at the transition. At T < T ⇤, the system is

in the “quantum critical region”, as shown in (b). As the system crosses over from metal

to insulator, the temperature dependence of the resistivity changes slope from positive to

negative.

1.1.1 Why is the MIT an important problem?

In contrast to elemental materials, in systems close to the MIT the physical properties
change dramatically with the variation of control parameters such as the carrier con-
centration, the temperature, or the external magnetic field. Such sensitivity to small
changes is, indeed, quite common in any material close to a phase transition. In doped
insulators this sensitivity follows from the vicinity to the metal-insulator transition.
The sharp critical behavior is seen here only at the lowest accessible temperatures, be-
cause a qualitative distinction between a metal and an insulator exists only at T = 0
(Fig. 1.2). Since the basic degrees of freedom controlling the electrical transport proper-
ties are electrons, and the transition is found at T = 0, quantum fluctuations dominate
the critical behavior. The metal-insulator transition should therefore be viewed as per-
haps the best example of a quantum critical point (QCP), a subject that has attracted
much of the physicist’s fancy and imagination in recent years (Sachdev, 2011). As near
other QCPs, one expects the qualitative behavior here to display a degree of univer-
sality, allowing an understanding based on simple yet fundamental physical pictures
and concepts. Before we understand the basic mechanisms and process that control



Numerical simulations 

 two difficulties: •  finite size effects 
•  small value of the SO coupling 

spin survival probability  

 our approach: 
•  extrapolate to 
•  work with an enhanced  

 coupling 


