

Pheliqs: PHotonique - ELectronique - Ingénierie - QuantiqueS

Near quantum-limited amplification and conversion based on a voltage-biased Josephson junction

Salha JEBARI, Florian Blanchet, Romain Albert, Dibyendu Hazra, Alexander Grimm, Fabien Portier and Max Hofheinz

Ideal amplifier

> Ultra Low Noise Amplification is a must in superconducting qubit experiments

- Qubit read out
- Quantum feedback

Ideal amplifier

Ultra Low Noise Amplification is a must in superconducting qubit experiments Qubit read out Quantum feedback Output Input 11.11.5 Easy to use Large bandwidth High dynamic range High gain Low noise

Commercial amplifiers

http://www.lownoisefactory.com

Advantages

- Simple to use
- Large bandwidth
- High dynamic range
- ✤ High gain

http://www.caltechmicrowave.org

Disadvantages

- High noise
- 2K at 6 GHz = 10 photons of noise
- Power dissipation

Commercial amplifiers

http://www.lownoisefactory.com

Advantages

- Simple to use
- Large bandwidth
- High dynamic range
- High gain

http://www.caltechmicrowave.org

Disadvantages

- High noise
- 2K at 6 GHz = 10 photons of noise
- Power dissipation

Parametric amplifier: new type of amplifier that can amplify without or with very <u>low noise</u>

Principle of parametric amplification

$$\omega_p = \omega_s + ?$$

<u>Why?</u>

- Any dissipation at a frequency less than $\frac{k_B T}{\hbar}$ necessarily introduces a noise \hbar
- Only parametric amplifier is able to control exactly the origin of frequency dissipation

Principle of parametric amplification

$$\omega_p = \omega_s + \omega_i$$

Why?

- Any dissipation at a frequency less than $\frac{k_B T}{\hbar}$ necessarily introduces a noise
- Only parametric amplifier is able to control exactly the origin of frequency dissipation

Principle of parametric amplification

$$\omega_p = \omega_s + \omega_i$$

Why?

- Any dissipation at a frequency less than $\frac{k_B T}{\hbar}$ necessarily introduces a noise
- Only parametric amplifier is able to control exactly the origin of frequency dissipation

Principle of parametric amplification

$$\omega_p = \omega_s + \omega_i$$

Why?

- Any dissipation at a frequency less than $\frac{k_B T}{\hbar}$ necessarily introduces a noise
- Only parametric amplifier is able to control exactly the origin of frequency dissipation

The challenge

The challenge

Outline

Part 1

From dynamic Coulomb blockade physics to Josephson parametric amplifier physics: Theory, Measurement results with Aluminium (Al) sample

Part 2

Optimization of parameters of ICTA samples: Niobium Nitride (NbN) sample

- A Cooper pair can only tunnel if it can lose its energy 2eV
- No density of states on the other side: No Cooper pair current

G.-L. Ingold and Y. V. Nazarov, Single Charge Tunneling 294, 21 (1992) T. Holst, D. Esteve, C. Urbina, and M. H. Devoret, Physical Review Letters 73, 3455 (1994)

- A Cooper pair can only tunnel if it can lose its energy 2eV
- One or several modes can absorb it as photons

G.-L. Ingold and Y. V. Nazarov, Single Charge Tunneling 294, 21 (1992) T. Holst, D. Esteve, C. Urbina, and M. H. Devoret, Physical Review Letters 73, 3455 (1994)

- A Cooper pair can only tunnel if it can lose its energy 2eV
- One or several modes can absorb it as photons

G.-L. Ingold and Y. V. Nazarov, Single Charge Tunneling 294, 21 (1992) T. Holst, D. Esteve, C. Urbina, and M. H. Devoret, Physical Review Letters 73, 3455 (1994)

Resonance condition

 $2eV \cong \hbar\omega_a + \hbar\omega_b$

Inelastic Cooper pair Tunneling Amplifier: ICTA

- Use parametric down-conversion process
- Send signal at one of the modes
- Process accelerated due to stimulated emission
- Quantum limited amplification

ICTA theory

ICTA theory

ICTA theory

ICTA theory: scattering matrix

ICTA theory: scattering matrix

ICTA gain

ICTA gain

Our case

$$\xi \propto E_J$$

Sample

Fabricated in Quantronic group CEA Saclay

Experimental setup

Experimental setup

On chip

Experimental setup

VNA measurement

Measurement @

Signal power = $-125 \, dBm$

 $I_{c} = 17.5 \,\mathrm{nA}$

30 10 8 25 6 Bias 2*eV/h* (GHz) 0 51 05 0 4 2 Gain (dB) 0 -2 -4 -65 -8 0∟ 4.0 -104.5 5.0 5.5 6.0 6.5 7.0 7.5 8.0 Frequency f (GHz)

$$H_{sys} \approx \hbar \omega_a a^+ a + \hbar \omega_b b^+ b - E_J \cos(\frac{2eVt}{\hbar} + \rho_a(a^+ + a) + \rho_b(b^+ + b))$$

$$H_{sys} = \hbar \omega_a a^+ a + \hbar \omega_b b^+ b + \hbar \lambda (a^+ b^+ e^{-i\omega_J t} + h.c.)$$

$$H_{sys} \approx \hbar \omega_{a} a^{+} a + \hbar \omega_{b} b^{+} b - E_{J} \cos(\frac{2eVt}{\hbar} + \rho_{a}(a^{+} + a) + \rho_{b}(b^{+} + b))$$

$$H_{sys} \approx \hbar \omega_{a} a^{+} a + \hbar \omega_{b} b^{+} b - \frac{E_{J}}{2} \left\{ e^{-i\omega_{J}} e^{-\frac{i}{2}\rho_{b}} \left(\sum_{n=0}^{\infty} \frac{1}{n} \right)^{n} \left(-i\rho_{a} a^{+} \left(\sum_{n=0}^{\infty} \frac{1}{n} \right)^{n} \right)^{(-i\rho_{b} b^{+}} \left(\sum_{p=0}^{\infty} \frac{1}{p} \right)^{(-i\rho_{a} a)} \left(\sum_{q=0}^{\infty} \frac{1}{q} \right)^{(-i\rho_{b} b^{-})^{q}} \right\} + hc.$$

$$H = \dots \alpha (a^{+})^{2} b e^{-i(\omega_{J} - 2\omega_{a} + \omega_{b})} + \dots + \beta a b (c^{+})^{3} e^{-i(\omega_{J} + \omega_{b} - 3\omega_{c})} + \dots$$

$$H_{sys} = \hbar \omega_a a^+ a + \hbar \omega_b b^+ b + \hbar \lambda (a^+ b^+ e^{-i\omega_J t} + h.c.)$$

$$H_{sys} \approx \hbar \omega_{a} a^{+} a + \hbar \omega_{b} b^{+} b - E_{J} \cos(\frac{2eVt}{\hbar} + \rho_{a}(a^{+} + a) + \rho_{b}(b^{+} + b))$$

$$H_{sys} \approx \hbar \omega_{a} a^{+} a + \hbar \omega_{b} b^{+} b - \frac{E_{J}}{2} \left\{ e^{-i\omega_{J}t} e^{-\frac{i}{2}\rho_{a}} e^{-\frac{i}{2}\rho_{b}} \right\} \left\{ \sum_{n=0}^{\infty} \frac{1}{n} (-i\rho_{a}a^{+} \left(\sum_{n=0}^{\infty} \frac{1}{n} \right)^{n} (-i\rho_{b}b^{+} \left(\sum_{p=0}^{\infty} \frac{1}{p} \right)^{n} (-i\rho_{a}a) \left(\sum_{q=0}^{\infty} \frac{1}{q} \right)^{n} (-i\rho_{b}b^{-})^{q} \right\} + hc.$$

$$H = \dots \alpha (a^{+})^{2} b e^{-i(\omega_{J} - 2\omega_{a} + \omega_{b})} + \dots + \beta a b (c^{+})^{3} e^{-i(\omega_{J} + \omega_{b} - 3\omega_{c})} + \dots$$
High signal power

$$H_{sys} = \hbar \omega_a a^+ a + \hbar \omega_b b^+ b + \hbar \lambda (a^+ b^+ e^{-i\omega_j t} + h.c.)$$

QUESTION!

Low signal power

Measurement @

 $I_c = 17.5 \text{ nA}$ Signal power = -90 dBm

$$\widetilde{I}(2eV) = \delta(0) \sum_{n} \left| J_n(\frac{2eU}{\hbar\omega_0}) \right|^2 I(2eV - n\hbar\omega_0)$$

Measurement @

 $I_c = 17.5 \text{ nA}$ Signal power = -90 dBm

PSD measurement

Noise measurement

Noise measurement

Summary

Summary

Second generation of ICTA Real sample

Points to optimize

- Eleminate frequency conversion process
- ✤ Increase junction size
- Lower resonator quality factor
- Reduce voltage noise

✤Idler @ 100 GHz

By using NbN superconductor

Salha Jebari and Max Hofheinz , patent application FR 16 58429 Submitted on 09-09-2016

Outline

Part 1

From dynamic Coulomb blockade physics to Josephson parametric amplifier physics: Theory, Measurement results with Aluminium (Al) sample

Part 2

Optimization of parameters of ICTA samples: Niobium Nitride (NbN) sample

Our ICTA implementation

NbN/MgO/NbN Josephson junction

0.010

First proof of amplification using NbN samples

First proof of amplification using NbN samples

Similaire sample with big Josephson junction

First proof of amplification using NbN samples

Single Cooper pair photonics group : ICTA project

Single Cooper pair photonics group : ICTA project

Conclusions in pictures

- Parametric amplification & Powered by
 DC voltage
- Close to quantum limit
- High frequency, high temperature
 - Bandwidth ?
 - Saturation ?

