# Non-local supercurrent of Quartets in a three-terminal Josephson junction

Al

Yonatan Cohen

GDR physique mésoscopique, Aussois

Weizmann Institute of Science



Al

#### **Josephson Junction**

Volume 1, number 7

PHYSICS LETTERS

1 July 1932

#### **POSSIBLE NEW EFFECTS IN SUPERCONDUCTIVE TUNNELLING \***

B.D. JOSEPHSON Cavendish Laboratory, Cambridge, England

Received 8 June 1962





















Moty Heiblum



Yuval

Ronen

v

Yonatan Cohen



Regis Mélin



Denis Feinberg



Non-local supercurrent of Quartets in a three-terminal Josephson junction



Andreev reflection





Andreev bound state **Cooper pair Supercurrent** 

Crossed Andreev reflection **Cooper pair** splitting





Quartet bound state Quartet Supercurrent



Andreev reflection





Andreev bound state **Cooper pair Supercurrent** 

Crossed Andreev reflection **Cooper pair** splitting





Quartet bound state Quartet Supercurrent



### **Realizing an SN junction**





#### Transport in an SN junction?



Institute of Science



#### Andreev Reflection (AR)





Andreev reflection





Andreev bound state **Cooper pair Supercurrent** 

Crossed Andreev reflection **Cooper pair** splitting





Quartet bound state Quartet Supercurrent



Andreev reflection





Andreev bound state **Cooper pair Supercurrent** 

Crossed Andreev reflection **Cooper pair** splitting





Quartet bound state Quartet Supercurrent



#### **Crossed Andreev Reflection (CAR)**







#### **Crossed Andreev Reflection (CAR)**







#### **Crossed Andreev Reflection (CAR)**

#### A source of entangled electrons













L. Hofstetter, S. Csonka, J. Nygard & C. Schonenberger, *Nature* (2009)







A. Das, Y.Ronen, M. Heiblum, D. Mahalu, A. V. Kretinin & H. Shtrikman, *Nat. Comm.* (2012)









#### **Positive Cross-Correlation**





Andreev reflection





Andreev bound state **Cooper pair Supercurrent** 

Crossed Andreev reflection **Cooper pair** splitting





Quartet bound state Quartet Supercurrent



Andreev reflection





Andreev bound state **Cooper pair Supercurrent** 

Crossed Andreev reflection **Cooper pair** splitting





Quartet bound state Quartet Supercurrent

# S S

#### Current flow in a Josephson junction





#### S S

#### Current flow in a Josephson junction



#### Current flow in a Josephson junction



ann te nce

S

#### Current flow in a Josephson junction



nn ce

S

#### (Ballistic) Andreev bound state









#### (Ballistic) Andreev bound state













S

S







LETTERS

#### Andreev bound state



#### Andreev bound states in supercurrent-carrying carbon nanotubes revealed

J-D. Pillet<sup>1</sup>, C. H. L. Quay<sup>11</sup>, P. Morfin<sup>2</sup>, C. Bena<sup>3,4</sup>, A. Levy Yeyati<sup>5</sup> and P. Joyez<sup>1\*</sup>





J-D. Pillet, C. H. L. Quay, P. Morfin, C. Bena, A. Levy Yeyati & P. Joyez, Nat. Phys. (2010)





Andreev reflection





Andreev bound state **Cooper pair Supercurrent** 

Crossed Andreev reflection **Cooper pair** splitting





Quartet bound state Quartet Supercurrent



Andreev reflection





Andreev bound state **Cooper pair Supercurrent** 

Crossed Andreev reflection **Cooper pair** splitting





Quartet bound state Quartet Supercurrent

#### Growth on (100) InAs





J.H.Kang, Y. Cohen, Y. Ronen, M. Heiblum, R. B., P. Kacman, R. Popovitz-Biro, Hadas Shtrikman, *Nano Lett.* (2013)





nn ce

S

S

![](_page_35_Figure_1.jpeg)

Weizmann Institute of Science

S

S

![](_page_35_Picture_3.jpeg)

![](_page_36_Figure_1.jpeg)

Weizmann Institute of Science

S

S

![](_page_36_Picture_3.jpeg)

![](_page_37_Figure_1.jpeg)

Weizmann Institute of Science

S

S

![](_page_37_Picture_3.jpeg)

![](_page_38_Figure_1.jpeg)

Weizmann Institute of Science

S

S

![](_page_38_Picture_3.jpeg)

![](_page_39_Figure_1.jpeg)

![](_page_39_Picture_2.jpeg)

S

S

![](_page_40_Figure_1.jpeg)

Weizmann Institute of Science

S

S

![](_page_41_Figure_1.jpeg)

![](_page_41_Picture_2.jpeg)

S

S

![](_page_42_Figure_1.jpeg)

Weizmann Institute of Science

S

S

![](_page_42_Picture_3.jpeg)

![](_page_43_Figure_0.jpeg)

#### **Experimental Results**

![](_page_43_Picture_2.jpeg)

![](_page_44_Figure_0.jpeg)

![](_page_45_Picture_0.jpeg)

#### Alternative mechanisms

Down-mixing of two ac Josephson currents

![](_page_45_Figure_3.jpeg)

Synchronization of ac Josephson currents

![](_page_45_Figure_5.jpeg)

Can produce a coherent resonant state like the quartet state

![](_page_46_Picture_0.jpeg)

#### **Device 1**

#### **Device 2**

![](_page_46_Picture_3.jpeg)

![](_page_47_Picture_0.jpeg)

![](_page_47_Picture_1.jpeg)

![](_page_47_Figure_2.jpeg)

![](_page_48_Figure_0.jpeg)

# S S

#### Alternative mechanisms

Down-mixing of two ac Josephson currents

![](_page_49_Picture_3.jpeg)

![](_page_49_Picture_4.jpeg)

![](_page_49_Picture_5.jpeg)

![](_page_49_Picture_6.jpeg)

Synchronization of ac Josephson currents

![](_page_49_Figure_8.jpeg)

Can produce a coherent resonant state like the quartet state

![](_page_50_Figure_0.jpeg)

Can point to the existence of the quartet Andreev bound states

![](_page_50_Picture_2.jpeg)

![](_page_51_Picture_0.jpeg)

![](_page_51_Figure_2.jpeg)

Ε  $\phi_{\text{L}}-\phi_{\text{R}}$ 

![](_page_51_Figure_4.jpeg)

![](_page_51_Picture_5.jpeg)

![](_page_52_Picture_0.jpeg)

![](_page_52_Figure_2.jpeg)

![](_page_53_Picture_0.jpeg)

![](_page_53_Figure_2.jpeg)

![](_page_54_Picture_0.jpeg)

![](_page_54_Figure_2.jpeg)

![](_page_55_Picture_0.jpeg)

![](_page_55_Figure_2.jpeg)

![](_page_56_Picture_0.jpeg)

![](_page_56_Figure_2.jpeg)

![](_page_56_Picture_3.jpeg)

![](_page_57_Picture_0.jpeg)

![](_page_57_Figure_2.jpeg)

![](_page_58_Figure_0.jpeg)

![](_page_59_Figure_0.jpeg)

![](_page_60_Figure_0.jpeg)

![](_page_61_Picture_0.jpeg)

# **Bi-SQUID**

#### showing coherence

Phase dependence of the quartet current

![](_page_61_Picture_4.jpeg)

#### **Bi-Squid: show that the quartet** current depends on phase

![](_page_62_Figure_1.jpeg)

electrodes (all at the same potential), with magnetic field biasing.

J. Rech, T. Jonckheere, T. Martin, B. Douc'ot, D. Feinberg, R. M'elin PRB (2014)

> $I_c(\Phi_{\mathcal{A}}, \Phi_{\mathcal{B}}) = 2I_{\mathrm{J}}[|\cos(\pi \tilde{\Phi}_{\mathcal{A}})| + |\cos(\pi \tilde{\Phi}_{\mathcal{B}})|]$  $+ |I_Q| |\sin(\pi \tilde{\Phi}_{\mathcal{A}} - \pi \tilde{\Phi}_{\mathcal{B}})|$ +  $|I_{\rm PC}||\sin(\pi \tilde{\Phi}_{\mathcal{A}} + \pi \tilde{\Phi}_{\mathcal{B}})|.$

S

S

# Bi-Squid: show that the quartet current depends on phase

![](_page_63_Figure_1.jpeg)

![](_page_63_Figure_2.jpeg)

$$\begin{split} I_c(\Phi_{\mathcal{A}}, \Phi_{\mathcal{B}}) &= 2I_{\mathrm{J}}[|\cos(\pi \,\tilde{\Phi}_{\mathcal{A}})| + |\cos(\pi \,\tilde{\Phi}_{\mathcal{B}})|] \\ &+ |I_{\mathrm{Q}}||\sin(\pi \,\tilde{\Phi}_{\mathcal{A}} - \pi \,\tilde{\Phi}_{\mathcal{B}})| \\ &+ |I_{\mathrm{PC}}||\sin(\pi \,\tilde{\Phi}_{\mathcal{A}} + \pi \,\tilde{\Phi}_{\mathcal{B}})|. \end{split}$$

S

S

![](_page_64_Picture_0.jpeg)

#### GDR physique mésoscopique, Aussois

![](_page_64_Picture_3.jpeg)