

STIMULATED EMISSION AND MICROWAVE ROUTER WITH A SUPERCONDUCTING QUBIT

Sébastien Jezouin

Quantum Electronics Group CNRS – Ecole Normale Supérieure, Paris, France

RESONANT EXCITATION OF AN ATOM

RESONANT EXCITATION OF AN $|e\rangle$ (artificial) ATOM in CAVITY QED $\langle \sigma_z \rangle$ 0.5 Campagne, Jezouin PRL 2016 -0.5 0.5 $\langle \sigma_y angle$ -0.5 2nns $|e\rangle$ gm> <// Drive + Stimulated photons ~nn Fluorescence (spontaneous emission) $|g\rangle$????? Control pulse 3

50

Time (ns)

100

150

12π

10π

10π

 Bapi angle (rad)

 8π

 6π

 4π

 2π

Campagne, PRX 2016

SUPERCONDUCTING (TRANSMON) QUBIT

3D TRANSMON QUBIT

... to a 3D cavity resonant mode

 f_q = 7.09 GHz f_c = 7.91 GHz χ = 33 MHz κ = 0.77 MHz T_1 = 1.95 μs T_2 = 2.95 μs

MEASURING THE STIMULATED PHOTONS ?

HETERODYNE MEASUREMENT

HETERODYNE MEASUREMENT

PHOTON RATE MEASUREMENT

ENERGY TRANSFER ACROSS THE QUBIT

ENERGY TRANSFER ACROSS THE QUBIT

ENERGY TRANSFER ACROSS THE QUBIT

PHASE DEPENDENCE OF STIMULATED EMISSION

PHASE DEPENDENCE OF STIMULATED EMISSION

TRANSFERRED vs INJECTED ENERGY

TRANSFERRED vs INJECTED ENERGY

ENERGY TRANSFER CONTRAST

CONCLUSION

THANKS !

