## Weak and strong non-linear effects in Josephson junction chains

Wiebke Guichard University Grenoble Alpes-Néel Institute Grenoble

#### Superconducting quantum circuits team



#### Permanents: Olivier Buisson, Cécile Naud, Wiebke Guichard, Nicolas Roch Non-permanents: Rémy Dasonneville, Javier Puertas-Martinez Yuriy Krupko, Luca Planat, Farshad Foroughi Former Students: Etienne Dumur, Thomas Weissl

# Collaboration with theoreticians from LPMMC Grenoble







**Denis Basko** 

Frank Hekking

Van Duy Nguyen



Gianluca Rastelli (University of Konstanz)



Grenoble Alpes





Artificial atoms with superconducting Josephson junction circuits



#### Artificial atoms with superconducting Josephson junction circuits



## **Recent experimental studies implying Josephson junction chains**

Linear inductances in qubit-circuits



Fluxonium qubit I. Pop et al, Nature, Vol 508,369 (2014)



Artifical atom: two inductively coupled transmons Étienne Dumur et al, Phys. Rev. B 92, 020515 (2015) **Non-linear effects** 



JJ-chain traveling-wave parametric amplifier C. Macklin et al, Science, Vol 350, 307 (2015)



Quantum phase-slips in JJ chains I. Pop et al, Nature Physics, Vol 6, 591, (2010)

## Josephson junction chain: a versatile element for quantum circuits

Activities of the superconducting quantum circuit team at the Néel Institute



## Josephson junction chain: a versatile element for quantum circuits

Activities of the superconducting quantum circuit team at the Néel Institute



## Outline

- 1) Linear effects: Dispersion of propagation modes in a Josephson junction chain
- 2) Weak non-linear effects: Self- and Cross Kerr effects in a Josephson junction chain
- 3) Strong non-linear effects: Quantum phase-slips

## **Experimental set-up: Transmission microwave measurements**







Sample holder





Sample holder







Sample holder



$$Z_1 = 50\Omega$$

$$Z_{chain} pprox 2k\Omega$$

$$Z_2 = 50\Omega$$

## **Fabry-Pérot Cavity**

Transmission through the cavity for frequencies of the stationary eigenmodes





#### Standard model for propagation modes in a Josephson junction chain



#### **Dispersion: Comparison between theory and experiment**



#### **Dispersion: Comparison between theory and experiment**



#### **Dispersion: Comparison between theory and experiment**



## **Remote ground model**



#### **Dispersion: Comparison between theory and experiment for remote ground model**



$$\hat{C}^{-1/2}\hat{L}^{-1}\hat{C}^{-1/2}\vec{\psi}_{k} = \omega_{k}^{2}\vec{\psi}_{k}$$

Perfect agreement !

New fitting parameters: L and a<sub>0</sub>

Number of fitting parameters is the same !

# Engineering of a controlled electromagnetic environment

## Outline

- 1) Linear effects: Dispersion of propagation modes in a Josephson junction chain
- 2) Non-linear effects: Self- and Cross Kerr effects in a Josephson junction chain
- 3) Strong non-linear effects: quantum phase-slips

#### Photon interaction due to non-linear effects in a Josephson junction chain







#### **Measured self-and cross Kerr-effect**



#### **Measured self-and cross Kerr-effect**

+30 dB

+40 dB



#### Weak non-linearity



#### **Measurement of Self-and Cross Kerr effects for 8 modes**



## Theory: Self-and Cross Kerr effect as a weak non-linearity

$$\begin{array}{c}
\hat{H} = \sum_{k} \hbar \omega_{k} \hat{a}_{k}^{+} \hat{a}_{k} - \sum_{k} \frac{\hbar}{2} K_{kk} \hat{a}_{k}^{+} \hat{a}_{k} \hat{a}_{k}^{+} \hat{a}_{k} - \sum_{j,k} \frac{\hbar}{2} K_{jk} \hat{a}_{j}^{+} \hat{a}_{j} \hat{a}_{k}^{+} \hat{a}_{k} - \dots \\
\hat{H} = \sum_{k,j} \hbar (\omega_{k}^{-} - \frac{1}{2} K_{kk} n_{k} - K_{jk} n_{j}) \hat{a}_{k}^{+} \hat{a}_{k}
\end{array}$$
Frequency shifts of propagating modes with increasing power
$$\begin{array}{c}
\omega_{k} = \omega_{k} - K_{kk} / 2 - \sum_{p} K_{kp} / 2 \\
K_{kk} = \frac{2\hbar \pi^{4} E_{J} \eta_{kkkk}}{\Phi_{0}^{4} C^{2} \omega_{k}^{2}} \\
K_{jk} = \frac{4\hbar \pi^{4} E_{J} \eta_{jkk}}{\Phi_{0}^{4} C^{2} \omega_{j} \omega_{k}} \\
\psi_{j} \psi_{k} \rightarrow \eta_{jjjj}, \eta_{jjkk} \\
\hat{C}^{-1/2} \hat{L}^{-1} \hat{C}^{-1/2} \bar{\psi}_{k} = \omega_{k}^{2} \bar{\psi}_{k}
\end{array}$$
T. Weissi et al, Phys. Rev. 8, 92,104508 (2015)

#### **Comparison between theory and experiment for Self- and Cross Kerr effects**

#### Experimental matrix of Kerr frequency shifts Xjk in MHz/ $\mu$ W

| <b>Xjk</b>   | j = 2 | <b>j</b> = 3 | j = 4 | <b>j</b> = 5 | <b>j</b> = 6 | j = 7 | <b>j</b> = 8 |
|--------------|-------|--------------|-------|--------------|--------------|-------|--------------|
| <i>k</i> = 2 | 34    | 61           | 55    | 74           | 59           | 76    | 64           |
| k = 3        | 64    | 68           | 98    | 105          | 91           | 115   | 91           |
| k = 4        | 56    | 92           | 85    | 124          | 103          | 137   | 98           |
| k = 5        | 42    | 72           | 75    | 99           | 85           | 113   | 58           |
| <b>k</b> = 6 | 43    | 61           | 71    | 99           | 66           | 91    | 41           |
| <i>k</i> = 7 | 24    | 33           | 43    | 54           | 40           | 31    | 32           |
| <i>k</i> = 8 | 18    | 25           | 28    | 31           | 19           | 31    | 28           |

$$\hat{H} = \sum_{k} \hbar(\omega_{k} - \frac{1}{2}K_{kk}n_{k} - K_{jk}n_{j})\hat{a}_{k}^{\dagger}\hat{a}_{k}$$

$$n_k = A_k(\omega)P_k$$

Experimental Matrix  $K_{jk}/K_{22}$  is symmetric within 5%. Up to k=4 very good agreement between experiment and theory. For larger mode numbers increasing disagreement.

| K <sub>jk</sub> /ł | < 22 | j = 2 | j = 3 | j = 4              | j = 5 | <b>j</b> = 6 | j=7               | j = 8 |
|--------------------|------|-------|-------|--------------------|-------|--------------|-------------------|-------|
| <b>k</b> =         | 2    | 1,00  | 1,79  | 1,62               | 2,18  | 1,74         | 2,23              | 1,88  |
| <b>k</b> =         | 3    | 1,79  | 1,89  | 2,71               | 2,92  | 2,52         | 3,20              | 2,51  |
| <b>k</b> =         | 4    | 1,62  | 2,65  | 2,45               | 3,57  | 2,94         | 3,95              | 2,81  |
| <b>k</b> =         | 5    | 2,18  | 3,71  | 3,85               | 5,07  | 4,36         | <mark>5,83</mark> | 2,96  |
| <b>k</b> =         | 6    | 1,74  | 2,48  | <mark>2,8</mark> 6 | 4,00  | 2,67         | 3,67              | 1,68  |
| <b>k</b> =         | 7    | 2,23  | 3,02  | 3,92               | 4,92  | 3,69         | 2,82              | 2,90  |
| k =                | 8    | 1,88  | 2,60  | 2,91               | 3,26  | 1,94         | 3,20              | 2,91  |

From Josephson parametric amplifier towards a Traveling Wave parametric amplifier



## Outline

1) Linear effects: Dispersion of propagation modes in a Josephson junction chain

2) Non-linear effects: Self- and Cross Kerr effects in a Josephson junction chain

3) Strong non-linear effects: quantum phase-slips

#### **Quantum phase-slip**



**Gaussian tails** 

#### Realisation of the phase-slip non-linearity with a small Josephson junction

**Energy spectrum of the junction consists of Bloch bands** 

Lowest Bloch band:

$$E_0(\hat{q}) = \sum_{k=1}^{\infty} U_k \cos(k\pi \hat{q}/e)$$

$$U_1 = \upsilon_{QPS} \approx \left(E_J^3 E_C\right)^{1/4} \exp\left(-\sqrt{8E_J / E_C}\right)$$



For intermediate values of  $E_J/E_c$ :

$$H = \frac{Q^2}{2C} - E_J \cos \varphi \qquad \longrightarrow \qquad H = \upsilon_{QPS} \cos\left(\frac{\pi q}{e}\right)$$

Averin, Likharev, Zorin (1985)

#### **Ordinary Josephson junction to Dual Josephson junction**



- Quantum Complementarity for the Superconducting Condensate and the Resulting Electrodynamic Duality, D. B. Haviland et al, Proc. Nobel Symposium on Coherence and Condensation, Physica Scripta T102, pp. 62 68 (2002)
- A.D. Zaikin, Journal of Low Temperature Physics, 80, Nos 5/6,(1990)
- -J. E. Mooij and Y. V. Nazarov, Nat. Phys. (2006)

Duality



#### Quantum phase-slip junction under microwave irradiation



#### Quantum phase-slip junction under microwave irradiation



#### Aharonov Casher effect in a short Josephson junction chain



#### **Dual to Aharonov-Bohm effect**

I. Pop et al, Nature Physics, Vol 6, 591, (2010)

I. Pop et al, Phys. Rev. B (2012)

0

q<sub>3</sub> (2e)

## Fluxonium qubit







SQUID antenna junctions





Small junction with Quantum phase-slips

#### Spectroscopy measurements with VNA



#### Measurement of the energy spectrum of the qubit



Energy spectrum of the qubit as a function of flux

#### Measurement of the qubit at low frequency:cooling pulses



#### Measurement of the qubit at low frequency:cooling pulses



#### **Time dependant measurements**



Measurement of Rabi-oscillations at f<sub>qubit</sub>=2.8GHz

Measurement of relaxation time at  $\Phi = \Phi_0/2$ 

## **Future experiments**

1) Measurement of off-set charge dynamics on coherent quantum phase-slips in a Josephson junction chain



2) Measurement of interaction between chain modes and qubit degrees of freedom

- Increase the number of junctions of the inductive chain
- Measurement of revival-effects in the coherent oscillations of the qubit

G. Rastelli et al, New J. Phys. 17 (2015) 053026 G. Viola and G. Catelani, Phys. Rev. B 92,224511, (2015)

## Summary

1) Dispersion of propagating modes in a Josephson junction chain (Remote ground model)

2) Study of Self-and Cross Kerr effects: Fairely good agreement between theory and experiment

- 3) Quantum phase-slips
  - Fluxonium







#### Superconducting quantum circuits team at Neel Institute













**Current group members:** 

Permanent: Olivier Buisson, Wiebke Guichard, Cécile Naud, Nicolas Roch

PhD and postdocs: Rémy Dassonneville, Farshad Foroughi, Yuriy Krupko, Luca Planat, Javier Puertas-Martinez

## Amplification of a single photon



Commercial amplifier:  $N_A \approx 10\hbar\omega$ Experimental signal  $\approx 1\hbar\omega$ 



Realisation of an amplifier working at the quantum limit of noise:  $N_A = \frac{1}{2} \hbar \omega$ 

#### Principal of amplification due to the non-linearity of the Josephson effect



 $2\omega_{pump} = \omega_{signal} + \omega_{idler}$ 

#### Principal of amplification due to the non-linearity of the Josephson effect

$$\widehat{H} = \hbar \omega_p \widehat{a}^+ \widehat{a} - \frac{\hbar}{2} K \widehat{a}^+_{signal} \widehat{a}_{pump} \widehat{a}^+_{idler} \widehat{a}_{pump} + \cdots$$

 $\omega_p = \frac{1}{\sqrt{L_J C}}$  Plasma frequency of Josephson junction

**Energy conservation:** 

 $2\omega_{pump} = \omega_{signal} + \omega_{idler}$ 



Stimulated emission of a photon amplified in a cavity

#### **Experimental characterisation of the non-linearity**



## **Experimental results of amplification**



#### **Future Developments**

Traveling Wave Parametric amplifie (TWPA) with large band width at the quantum limit of noise

![](_page_49_Picture_2.jpeg)

Engineering of the dispersion relation of a Josephson junction chain acting as a metamaterial

![](_page_49_Figure_4.jpeg)

Homogeneous chain

Chain where the size of the junctions is modulated

# Kerr-effect

$$\eta_{jjkk} = \sum_{n} \left[ \left( \sum_{m} \left( \sqrt{C} \hat{C}_{n,m}^{-1/2} - \sqrt{C} \hat{C}_{n-1,m}^{-1/2} \right) \psi_{m,j} \right)^2 \cdot \left( \sum_{m} \left( \sqrt{C} \hat{C}_{n,m}^{-1/2} - \sqrt{C} \hat{C}_{n-1,m}^{-1/2} \right) \psi_{m,k} \right)^2 \right]$$

Dispersion: Comparison between theory and experiment for remote ground model

$$Q_n = C(V_n - V_{n-1}) + C(V_n - V_{n+1}) + \widetilde{Q}_n$$

Standard model:

$$\widetilde{Q}_n = C_g V_n$$

#### Remote ground model

$$V_{n} = \sum_{m=1}^{\infty} \tilde{Q}_{m} \frac{1}{2\pi\varepsilon_{0}(\varepsilon+1)} \sum_{j=0}^{\infty} \left[ \frac{\left((1-\varepsilon)/(1+\varepsilon)\right)^{j}}{\sqrt{(n-m)^{2}a^{2} + (2jd-a_{0})^{2}}} - \frac{\left((1-\varepsilon)/(1+\varepsilon)\right)^{j}}{\sqrt{(n-m)^{2}a^{2} + (2j+2)^{2}d^{2}}} \right]$$

#### Dispersion: Comparison between theory and experiment for remote ground model

![](_page_52_Figure_1.jpeg)

![](_page_53_Figure_0.jpeg)