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Artificial atoms with superconducting Josephson junction circuits
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Artificial atoms with superconducting Josephson junction circuits
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Recent experimental studies implying Josephson junction chains

Artifical atom: two inductively coupled transmons
Étienne Dumur et al, Phys. Rev. B 92, 020515 (2015)

Fluxonium qubit
I. Pop et al, Nature, Vol 508,369 (2014)

JJ-chain traveling-wave parametric amplifier
C. Macklin et al, Science, Vol 350, 307 (2015)

Linear inductances in qubit-circuits Non-linear effects

Quantum phase-slips in JJ chains
I. Pop et al, Nature Physics, Vol 6, 591, (2010)



Josephson junction chain: a versatile element for quantum circuits 
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Large inductance

-Fluxonium Qubit

-V-shape artifical atom (Transmon)

Novel Quantum measurements

Metamaterials

Bath of photonic modes

-Dispersion relation 

-Spin-Boson model

Non-linear effects

-Kerr effects between photonic modes

-Amplification

-Study of quantum phase-slips

3m

Activities of the superconducting quantum circuit team at the Néel Institute



Josephson junction chain: a versatile element for quantum circuits 
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Large inductance

-Fluxonium Qubit

-V-shape artifical atom (Transmon)

Novel Quantum measurements

Metamaterials

Bath of photonic modes
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-Spin-Boson model

Non-linear effects

-Kerr effects between photonic modes

-Amplification

-Study of quantum phase-slips
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In this talk !

Activities of the superconducting quantum circuit team at the Néel Institute

Farshad Foroughi

(Postdoc)

Yuriy Krupko

(Postdoc)



1) Linear effects: Dispersion of propagation modes in a Josephson junction chain

2) Weak non-linear effects: Self- and Cross Kerr effects in a Josephson junction chain

3) Strong non-linear effects: Quantum phase-slips

Outline



Experimental set-up: Transmission microwave measurements
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Dispersion of propagation modes in a Josephson junction chain

Chain of 500 SQUIDs
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Dispersion of propagation modes in a Josephson junction chain

Chain of 500 SQUIDs
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Dispersion of propagation modes in a Josephson junction chain

Chain of 500 SQUIDs
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Transmission through the cavity

for frequencies of the stationary eigenmodes



Dispersion of propagation modes in a Josephson junction chain

Experimental dispersion curve (k)
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Standard model for propagation modes in a Josephson junction chain
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PhD-thesis of I. Pop (2011)
N.A. Masluk et al, Phys. Rev. Lett, 109,137002, (2012)
T. Weissl et al, Phys. Rev. B, 92,104508 (2015)
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Dispersion: Comparison between theory and experiment

Fitting parameters: L and C0
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Dispersion: Comparison between theory and experiment
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Dispersion: Comparison between theory and experiment

Do we need a new model ?
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Air

V=0

Remote ground model

Silicium

(substrate)

Gold ground plane

Image charges 
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Longe range interaction
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Dispersion: Comparison between theory and experiment for remote ground model

Perfect agreement !

kkkCLC 
 22/112/1 ˆˆˆ 

New fitting parameters: L and a0

Number of fitting parameters is the same !

Engineering of a controlled

electromagnetic environment



1) Linear effects: Dispersion of propagation modes in a Josephson junction chain

2) Non-linear effects: Self- and Cross Kerr effects in a Josephson junction chain

3) Strong non-linear effects: quantum phase-slips

Outline
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Cross-Kerr effect

Photon interaction due to non-linear effects in a Josephson junction chain



Measured self-and cross Kerr-effect

Self-Kerr effect
Variable power is applied
to the pumping mode

Power(dBm)

F
re

q
u

e
n

c
y
(G

H
z
)

S 2
1

S
2
1

Frequency (GHz)
10 20

300 K

50 K

4 K

0.01 K

0.1 K

1 K

-6 dB

-1 dB

-20 dB

-1 dB

-20 dB

-20 dB

+40 dB

+30 dB

Pump and Measure mode 4



Measured self-and cross Kerr-effect

Variable power is applied
to the pumping mode

Cross-Kerr effect
…while the probing mode is
fed with constant power
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Weak non-linearity

Bistability

Power (dBm)

S 2
1

F
re

q
u

e
n

c
y
(G

H
z
)

F
re

q
u

e
n

c
y
(G

H
z
)

Power (Watt)



Measurement of Self-and Cross Kerr effects for 8 modes

Self-Kerr 

effect

Cross-Kerr 

effect

Measure mode 3, pump mode 3 Measure mode 4, pump mode 4 Measure mode 7, pump mode 7

Measure mode 3, pump mode 2,4,5,6,7,8 Measure mode 4, pump mode 2,3,5,6,7,8 Measure mode 7, pump mode 2,3,4,5,6,8

Deduce frequency shifts Xjk of mode j as function of 

applied power on mode k
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Y. Krupko et al, preprint in preparation



Theory: Self-and Cross Kerr effect as a weak non-linearity
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Self-KerrFrequency shifts of propagating modes 

with increasing power
Cross-Kerr

T. Weissl et al, Phys. Rev. B, 92,104508 (2015)



Comparison between theory and experiment for Self- and Cross Kerr effects

Experimental matrix of Kerr frequency shifts Xjk in MHz/W
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Experimental Matrix Kjk/K22 is symmetric within 5%.

Up to k=4 very good agreement between experiment and theory.

For larger mode numbers increasing disagreement.



From Josephson parametric amplifier towards a 
Traveling Wave parametric amplifier

Nicolas Roch
Luca Planat

PhD-student

 𝑯 = ℏ𝝎𝒑 𝒂
+ 𝒂 −
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Stimulated emission of a photon amplified in a cavity



1) Linear effects: Dispersion of propagation modes in a Josephson junction chain

2) Non-linear effects: Self- and Cross Kerr effects in a Josephson junction chain

3) Strong non-linear effects: quantum phase-slips

Outline
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Realisation of the phase-slip non-linearity with a small Josephson junction

Averin, Likharev, Zorin (1985)
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EJ/EC=0.25
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Energy spectrum of the junction consists of Bloch bands
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Ordinary Josephson junction to Dual Josephson junction

Coherent Cooper pair tunneling Coherent quantum phase-slips

- Quantum Complementarity for the Superconducting Condensate and the Resulting Electrodynamic Duality, D. B. Haviland et al, 
Proc. Nobel Symposium on Coherence and Condensation, Physica Scripta T102 , pp. 62 - 68 (2002)
- A.D. Zaikin, Journal of Low Temperature Physics, 80, Nos 5/6,(1990)
-J. E. Mooij and Y. V. Nazarov, Nat. Phys.(2006)
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Duality

Coherent quantum phase-slips

Ideal large Josephson junction Quantum phase-slip junction
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Quantum phase-slip junction under microwave irradiation

Ideal large Josephson Junction Quantum Phase-slip junction
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Quantum phase-slip junction under microwave irradiation
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Aharonov Casher effect in a short Josephson junction chain

Dual to Aharonov-Bohm effect

I. Pop et al, Nature Physics, Vol 6, 591, (2010)

I. Pop et al, Phys. Rev. B (2012) 
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Fluxonium qubit
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I.M. Pop et al.,Nature 508, 369–372 (2014)
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Spectroscopy measurements with VNA
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Measurement of the energy spectrum of the qubit
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Energy spectrum of the qubit as a function of flux



Measurement of the qubit at low frequency:cooling pulses
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Measurement of the qubit at low frequency:cooling pulses
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Time dependant measurements

T2Rabi=800ns

Measurement of Rabi-oscillations at fqubit=2.8GHz
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Future experiments

1) Measurement of off-set charge dynamics on coherent quantum phase-slips in a Josephson junction chain

Small junction

Replace single small junction by a chain
of small junctions

Study of the coherence of
Quantum phase-slips in a 
Josephson junction chain

2) Measurement of interaction between chain modes and qubit degrees of freedom

Increase the number of junctions of the inductive chain

Measurement of revival-effects in the coherent oscillations of the qubit

G. Rastelli et al, New J. Phys. 17 (2015) 053026

G. Viola and G. Catelani,  Phys. Rev. B 92,224511, (2015)

300nm



Summary

2)  Study of Self-and Cross Kerr effects: 

Fairely good agreement between theory and experiment

1) Dispersion of propagating modes 

in a Josephson junction chain (Remote ground model) 
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Amplification of a single photon

𝐸1

𝐸2 ℏ𝜔

Commercial amplifier: NA ≈ 𝟏𝟎ℏ𝝎
E𝐱𝐩𝐞𝐫𝐢𝐦𝐞𝐧𝐭𝐚𝐥 𝐬𝐢𝐠𝐧𝐚𝐥 ≈ 1 ℏ𝝎

Detection

𝑁𝐴: Added noise

Amplifier

𝑘𝐵𝑇 ≪ ℏ𝜔

𝑁𝐴

Realisation of an amplifier working at the quantum limit of noise: NA= 
𝟏

𝟐
ℏ𝝎



Principal of amplification due to the non-linearity of the Josephson effect
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 𝑯 = ℏ𝝎𝒑 𝒂
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ℏ

𝟐
𝑲 𝒂𝒔𝒊𝒈𝒏𝒂𝒍
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+  𝒂𝒑𝒖𝒎𝒑 +⋯

𝜔𝑝 =
1
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Plasma frequency of Josephson junction

𝟐𝝎𝒑𝒖𝒎𝒑 = 𝝎𝒔𝒊𝒈𝒏𝒂𝒍 + 𝝎𝒊𝒅𝒍𝒆𝒓

Energy conservation:



Principal of amplification due to the non-linearity of the Josephson effect

 𝑯 = ℏ𝝎𝒑 𝒂
+ 𝒂 −

ℏ

𝟐
𝑲 𝒂𝒔𝒊𝒈𝒏𝒂𝒍

+  𝒂𝒑𝒖𝒎𝒑 𝒂𝒊𝒅𝒍𝒆𝒓
+  𝒂𝒑𝒖𝒎𝒑 +⋯

𝝎𝒑 =
𝟏

𝑳𝑱𝑪
Plasma frequency of Josephson junction

2𝜔𝑝𝑢𝑚𝑝 = 𝜔𝑠𝑖𝑔𝑛𝑎𝑙 + 𝜔𝑖𝑑𝑙𝑒𝑟

Energy conservation:
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Stimulated emission of a photon amplified in a cavity



Experimental characterisation of the non-linearity



Experimental results of amplification

Figures of merit:

Gmax=20 dB

f=20 MHz

1 dB compression point: Psat=-128dBm

Frequency(GHz)
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Pump on
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Future Developments

Traveling Wave Parametric amplifie (TWPA) with large band width at the quantum limit of noise

Engineering of the dispersion relation of a Josephson junction chain acting

as a metamaterial

Homogeneous chain Chain where the size of the junctions is modulated

3m



Kerr-effect
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Dispersion: Comparison between theory and experiment for remote ground model
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Remote ground model



Dispersion: Comparison between theory and experiment for remote ground model

Perfect agreement ! C
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New fitting parameters: L and a0



L = 300 nH, C = 7 fF, hence rho_q = 0.25 (from Thomas)

Rho_q = 0.5 (from figure 1b)

Bandwidth is about .14 hbar omega_q

Bandwidth is about .04 hbar omega_q


