Weak and strong non-linear effects in Josephson junction chains

Wiebke Guichard University Grenoble Alpes-Néel Institute Grenoble

Superconducting quantum circuits team

Permanents: Olivier Buisson, Cécile Naud, Wiebke Guichard, Nicolas Roch **Non-permanents**: Rémy Dasonneville, Javier Puertas-Martinez **Yuriy Krupko**, Luca Planat, **Farshad Foroughi Former Students**: Etienne Dumur, **Thomas Weissl**

Collaboration with theoreticians from LPMMC Grenoble

Denis Basko Frank Hekking Van Duy Nguyen

Gianluca Rastelli (University of Konstanz)

UNIVERSITÉ **Alpes**

Artificial atoms with superconducting Josephson junction circuits

Artificial atoms with superconducting Josephson junction circuits

Recent experimental studies implying Josephson junction chains

Linear inductances in qubit-circuits Non-linear effects

Fluxonium qubit

Artifical atom: two inductively coupled transmons *Étienne Dumur et al, Phys. Rev. B 92, 020515 (2015)*

I. Pop et al, Nature, Vol 508,369 (2014) **JJ-chain traveling-wave parametric amplifier** *C. Macklin et al, Science, Vol 350, 307 (2015)*

Quantum phase-slips in JJ chains *I. Pop et al, Nature Physics, Vol 6, 591, (2010)*

Josephson junction chain: a versatile element for quantum circuits

Activities of the superconducting quantum circuit team at the Néel Institute

Josephson junction chain: a versatile element for quantum circuits

Activities of the superconducting quantum circuit team at the Néel Institute

Outline

- **1) Linear effects: Dispersion of propagation modes in a Josephson junction chain**
- **2) Weak non-linear effects: Self- and Cross Kerr effects in a Josephson junction chain**
- **3) Strong non-linear effects: Quantum phase-slips**

Experimental set-up: Transmission microwave measurements

Sample holder

Sample holder

Sample holder

$$
Z_1 = 50\Omega
$$

Fabry-Pérot Cavity

Transmission through the cavity for frequencies of the stationary eigenmodes

Standard model for propagation modes in a Josephson junction chain

Dispersion: Comparison between theory and experiment

Dispersion: Comparison between theory and experiment

Dispersion: Comparison between theory and experiment

Remote ground model

Dispersion: Comparison between theory and experiment for remote ground model

$$
\hat{C}^{-1/2}\hat{L}^{-1}\hat{C}^{-1/2}\vec{\psi}_k = \omega_k^2\vec{\psi}_k
$$

Perfect agreement !

New fitting parameters: L and a₀

Number of fitting parameters is the same !

Engineering of a controlled electromagnetic environment

Outline

- **1) Linear effects: Dispersion of propagation modes in a Josephson junction chain**
- **2) Non-linear effects: Self- and Cross Kerr effects in a Josephson junction chain**
- **3) Strong non-linear effects: quantum phase-slips**

Photon interaction due to non-linear effects in a Josephson junction chain

Measured self-and cross Kerr-effect

Measured self-and cross Kerr-effect

+40 dB

+30 dB

Weak non-linearity

Measurement of Self-and Cross Kerr effects for 8 modes

Theory: Self-and Cross Kerr effect as a weak non-linearity

$$
E_{J} \cos(\varphi) \approx E_{J} (1 - \frac{\varphi^{2}}{2} + \frac{\varphi^{4}}{24})
$$
\n
$$
\hat{H} = \sum_{k} \hbar \omega_{k} \hat{a}_{k}^{\dagger} \hat{a}_{k} - \sum_{k} \frac{\hbar}{2} K_{kk} \hat{a}_{k}^{\dagger} \hat{a}_{k} \hat{a}_{k} - \sum_{j,k} \frac{\hbar}{2} K_{jk} \hat{a}_{j}^{\dagger} \hat{a}_{j} \hat{a}_{k}^{\dagger} \hat{a}_{k} - \dots
$$
\n
$$
\hat{H} = \sum_{k,j} \hbar (\omega_{k} - \frac{1}{2} K_{kk} n_{k} - K_{jk} n_{j}) \hat{a}_{k}^{\dagger} \hat{a}_{k}
$$
\n
$$
\hat{H} = \sum_{k,j} \hbar (\omega_{k} - \frac{1}{2} K_{kk} n_{k} - K_{jk} n_{j}) \hat{a}_{k}^{\dagger} \hat{a}_{k}
$$
\n
$$
\hat{\omega}_{k} = \omega_{k} - K_{kk} / 2 - \sum_{p} K_{kp} / 2
$$
\nFrequency shifts of propagating modes
\nwith increasing power\n
$$
K_{kk} = \frac{2 \hbar \pi^{4} E_{J} \eta_{kkk}}{\Phi_{0}^{4} C^{2} \omega_{k}^{2}}
$$
\n
$$
K_{jk} = \frac{4 \hbar \pi^{4} E_{J} \eta_{jkk}}{\Phi_{0}^{4} C^{2} \omega_{j} \omega_{k}}
$$
\n
$$
\hat{C}^{-1/2} \hat{L}^{4} \hat{C}^{-1/2} \hat{\psi}_{k} = \omega_{k}^{2} \hat{\psi}_{k}
$$

Comparison between theory and experiment for Self- and Cross Kerr effects

Experimental matrix of Kerr frequency shifts Xjk in MHz/W

$$
\hat{H} = \sum_{k} \hbar (\omega_k - \frac{1}{2} K_{kk} n_k - K_{jk} n_j) \hat{a}_k^+ \hat{a}_k
$$

$$
n_k = A_k(\omega) P_k
$$

$$
\left| X_{jk} = A_j K_{jk} \right| \quad \left| K_{j2} = K_{2j} \right| \quad \longrightarrow
$$

Experimental Matrix K_{jk}/K_{22} is symmetric within 5%. Up to k=4 very good agreement between experiment and theory. For larger mode numbers increasing disagreement.

From Josephson parametric amplifier towards a Traveling Wave parametric amplifier

Outline

1) Linear effects: Dispersion of propagation modes in a Josephson junction chain

2) Non-linear effects: Self- and Cross Kerr effects in a Josephson junction chain

3) Strong non-linear effects: quantum phase-slips

Quantum phase-slip

Realisation of the phase-slip non-linearity with a small Josephson junction

Energy spectrum of the junction consists of Bloch bands

Lowest Bloch band:

$$
E_0(\hat{q}) = \sum_{k=1}^{\infty} U_k \cos(k\pi \hat{q}/e)
$$

$$
U_1 = \nu_{QPS} \approx \left(E_J^3 E_C\right)^{1/4} \exp\left(-\sqrt{8E_J/E_C}\right)
$$

For intermediate values of E^J /E^c :

$$
H = \frac{Q^2}{2C} - E_J \cos \varphi \qquad H = v_{QPS} \cos \left(\frac{\pi q}{e} \right)
$$

Averin, Likharev, Zorin (1985)

Ordinary Josephson junction to Dual Josephson junction

- *- Quantum Complementarity for the Superconducting Condensate and the Resulting Electrodynamic Duality, D. B. Haviland et al, Proc. Nobel Symposium on Coherence and Condensation, Physica Scripta T102 , pp. 62 - 68 (2002)*
- *- A.D. Zaikin, Journal of Low Temperature Physics, 80, Nos 5/6,(1990)*
- *-J. E. Mooij and Y. V. Nazarov, Nat. Phys.(2006)*

Duality

Quantum phase-slip junction under microwave irradiation

Quantum phase-slip junction under microwave irradiation

Aharonov Casher effect in a short Josephson junction chain

Dual to Aharonov-Bohm effect

I. Pop et al, Nature Physics, Vol 6, 591, (2010)

Fluxonium qubit

Small junction with

I.M. Pop et al.,Nature 508, 369–372 (2014)

Spectroscopy measurements with VNA

Measurement of the energy spectrum of the qubit

Energy spectrum of the qubit as a function of flux

Measurement of the qubit at low frequency:cooling pulses

Measurement of the qubit at low frequency:cooling pulses

Time dependant measurements

Measurement of Rabi-oscillations at f_{qubit}=2.8GHz

Measurement of relaxation time at Φ **=** Φ_0 **/2**

Future experiments

1) Measurement of off-set charge dynamics on coherent quantum phase-slips in a Josephson junction chain

2) Measurement of interaction between chain modes and qubit degrees of freedom

- **Increase the number of junctions of the inductive chain**
- **Measurement of revival-effects in the coherent oscillations of the qubit**

G. Rastelli et al, New J. Phys. 17 (2015) 053026 G. Viola and G. Catelani, Phys. Rev. B 92,224511, (2015)

Summary

1) Dispersion of propagating modes in a Josephson junction chain (Remote ground model)

2) Study of Self-and Cross Kerr effects: Fairely good agreement between theory and experiment

- **3) Quantum phase-slips**
	-

Superconducting quantum circuits team at Neel Institute

Current group members:

Permanent: Olivier Buisson, Wiebke Guichard, Cécile Naud, Nicolas Roch

PhD and postdocs: Rémy Dassonneville, Farshad Foroughi, Yuriy Krupko, Luca Planat, Javier Puertas-Martinez

Amplification of a single photon

Commercial amplifier: $N_A \approx 10 \hbar \omega$ **Experimental signal** $\approx 1 \hbar \omega$

Realisation of an amplifier working at the quantum limit of noise: N_A= $\mathbf{1}$ $\mathbf{2}$ $\hbar\boldsymbol{\omega}$

Principal of amplification due to the non-linearity of the Josephson effect

 $2\omega_{pump} = \omega_{signal} + \omega_{idler}$

Principal of amplification due to the non-linearity of the Josephson effect

$$
\widehat{H} = \hbar \omega_p \widehat{a}^+ \widehat{a} - \frac{\hbar}{2} K \widehat{a}^+_{signal} \widehat{a}_{pump} \widehat{a}^+_{idler} \widehat{a}_{pump} + \cdots
$$

 $\omega_p =$ $\mathbf{1}$ L_jC **Plasma frequency of Josephson junction**

Energy conservation:

 $2\omega_{pump} = \omega_{signal} + \omega_{idler}$

Stimulated emission of a photon amplified in a cavity

Experimental characterisation of the non-linearity

Experimental results of amplification

Future Developments

Traveling Wave Parametric amplifie (TWPA) with large band width at the quantum limit of noise

Engineering of the dispersion relation of a Josephson junction chain acting as a metamaterial

Homogeneous chain Chain where the size of the junctions is modulated

Kerr-effect

$$
\eta_{j j k k} = \sum_{n} \left[\left(\sum_{m} \left(\sqrt{C} \hat{C}_{n,m}^{-1/2} - \sqrt{C} \hat{C}_{n-1,m}^{-1/2} \right) \psi_{m,j} \right)^2 \cdot \left(\sum_{m} \left(\sqrt{C} \hat{C}_{n,m}^{-1/2} - \sqrt{C} \hat{C}_{n-1,m}^{-1/2} \right) \psi_{m,k} \right)^2 \right]
$$

Dispersion: Comparison between theory and experiment for remote ground model

$$
Q_n = C(V_n - V_{n-1}) + C(V_n - V_{n+1}) + \widetilde{Q}_n
$$

Standard model:

$$
\widetilde{Q}_n = C_g V_n
$$

Remote ground model

$$
V_n = \sum_{m=1}^{\infty} \tilde{Q}_m \frac{1}{2\pi \varepsilon_0 (\varepsilon + 1)} \sum_{j=0}^{\infty} \left[\frac{\left((1 - \varepsilon)/(1 + \varepsilon) \right)^j}{\sqrt{\left(n - m \right)^2 a^2 + \left(2jd - a_0 \right)^2}} - \frac{\left((1 - \varepsilon)/(1 + \varepsilon) \right)^j}{\sqrt{\left(n - m \right)^2 a^2 + \left(2j + 2 \right)^2 d^2}} \right]
$$

Dispersion: Comparison between theory and experiment for remote ground model

