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What are minimal excitations?
Simply posed problem

V (t)

single-mode 1d conductor (quantum wire)
with time-dependent voltage V (t) across
Ù q = e

h
∫

dtV (t) charges injected

how to make it a reliable qp injector?

Non-trivial variational problem [Levitov et al., J. Math. Phys. 37, 4845 (’96)]

engineer V (t) so that Nexc = Ne + Nh minimal
acquired phase φ(t) such that e iφ(t) has special pole structure

solution is a combination of Lorentzian pulses

V (t) = ~
e

n∑
i=1

2τi

(t − ti )2 + τ 2
i

=⇒ Nexc = n + 0 is minimal

Profiles of a leviton [Keeling et al., PRL 97, 116403 (’06)]
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Electronic quantum optics in quantum Hall systems
Quantum optics analogs with electrons, i.e. the controlled preparation,

manipulation and measurement of single excitations in ballistic conductors

IN
GR

ED
IE
N
T

LI
ST

Photons
↓

Electrons

Light beam
↓

Chiral edge QHE

Beam-splitter
↓

Point contact

Coherent light source
↓

Single electron sourceSingle electron source
Mesoscopic capacitor
[Fève et al., Science (’07)]

Surface acoustic waves
[Hermelin et al., Nature (’11)]
[McNeil et al., Nature (’11)]
Quantum turnstiles

[Giblin et al., Nature Comm.(’12)]
Lorentzian pulses

[Dubois et al., Nature (’13)]

Ù opens the way to all sorts of interference experiments!

3 / 15



Electronic quantum optics in quantum Hall systems
Quantum optics analogs with electrons, i.e. the controlled preparation,

manipulation and measurement of single excitations in ballistic conductors

IN
GR

ED
IE
N
T

LI
ST

Photons
↓

Electrons

Light beam
↓

Chiral edge QHE

Beam-splitter
↓

Point contact

Coherent light source
↓

Single electron sourceSingle electron source
Mesoscopic capacitor
[Fève et al., Science (’07)]

Surface acoustic waves
[Hermelin et al., Nature (’11)]
[McNeil et al., Nature (’11)]
Quantum turnstiles

[Giblin et al., Nature Comm.(’12)]
Lorentzian pulses

[Dubois et al., Nature (’13)]

Ù opens the way to all sorts of interference experiments!

3 / 15



Electronic quantum optics in quantum Hall systems
Quantum optics analogs with electrons, i.e. the controlled preparation,

manipulation and measurement of single excitations in ballistic conductors

IN
GR

ED
IE
N
T

LI
ST

Photons
↓

Electrons

Light beam
↓

Chiral edge QHE

Beam-splitter
↓

Point contact

Coherent light source
↓

Single electron sourceSingle electron source
Mesoscopic capacitor
[Fève et al., Science (’07)]

Surface acoustic waves
[Hermelin et al., Nature (’11)]
[McNeil et al., Nature (’11)]
Quantum turnstiles

[Giblin et al., Nature Comm.(’12)]
Lorentzian pulses

[Dubois et al., Nature (’13)]

Ù opens the way to all sorts of interference experiments!

3 / 15



Electronic quantum optics in quantum Hall systems
Quantum optics analogs with electrons, i.e. the controlled preparation,

manipulation and measurement of single excitations in ballistic conductors

IN
GR

ED
IE
N
T

LI
ST

Photons
↓

Electrons

Light beam
↓

Chiral edge QHE

Beam-splitter
↓

Point contact

Coherent light source
↓

Single electron sourceSingle electron source
Mesoscopic capacitor
[Fève et al., Science (’07)]

Surface acoustic waves
[Hermelin et al., Nature (’11)]
[McNeil et al., Nature (’11)]
Quantum turnstiles

[Giblin et al., Nature Comm.(’12)]
Lorentzian pulses

[Dubois et al., Nature (’13)]

Ù opens the way to all sorts of interference experiments!

3 / 15



Electronic quantum optics in quantum Hall systems
Quantum optics analogs with electrons, i.e. the controlled preparation,

manipulation and measurement of single excitations in ballistic conductors

IN
GR

ED
IE
N
T

LI
ST

Photons
↓

Electrons

Light beam
↓

Chiral edge QHE

Beam-splitter
↓

Point contact

Coherent light source
↓

Single electron sourceSingle electron source
Mesoscopic capacitor
[Fève et al., Science (’07)]

Surface acoustic waves
[Hermelin et al., Nature (’11)]
[McNeil et al., Nature (’11)]
Quantum turnstiles

[Giblin et al., Nature Comm.(’12)]
Lorentzian pulses

[Dubois et al., Nature (’13)]

Ù opens the way to all sorts of interference experiments!

3 / 15



Electronic quantum optics in quantum Hall systems
Quantum optics analogs with electrons, i.e. the controlled preparation,

manipulation and measurement of single excitations in ballistic conductors

IN
GR

ED
IE
N
T

LI
ST

Photons
↓

Electrons

Light beam
↓

Chiral edge QHE

Beam-splitter
↓

Point contact

Coherent light source
↓

Single electron sourceSingle electron source
Mesoscopic capacitor
[Fève et al., Science (’07)]

Surface acoustic waves
[Hermelin et al., Nature (’11)]
[McNeil et al., Nature (’11)]
Quantum turnstiles

[Giblin et al., Nature Comm.(’12)]
Lorentzian pulses

[Dubois et al., Nature (’13)]

Ù opens the way to all sorts of interference experiments!

3 / 15



Electronic quantum optics in quantum Hall systems
Quantum optics analogs with electrons, i.e. the controlled preparation,

manipulation and measurement of single excitations in ballistic conductors

IN
GR

ED
IE
N
T

LI
ST

Photons
↓

Electrons

Light beam
↓

Chiral edge QHE

Beam-splitter
↓

Point contact

Coherent light source
↓

Single electron sourceSingle electron source
Mesoscopic capacitor
[Fève et al., Science (’07)]

Surface acoustic waves
[Hermelin et al., Nature (’11)]
[McNeil et al., Nature (’11)]
Quantum turnstiles

[Giblin et al., Nature Comm.(’12)]
Lorentzian pulses

[Dubois et al., Nature (’13)]

Ù opens the way to all sorts of interference experiments!

3 / 15



Electronic quantum optics in quantum Hall systems
Quantum optics analogs with electrons, i.e. the controlled preparation,

manipulation and measurement of single excitations in ballistic conductors

IN
GR

ED
IE
N
T

LI
ST

Photons
↓

Electrons

Light beam
↓

Chiral edge QHE

Beam-splitter
↓

Point contact

Coherent light source
↓

Single electron source

Single electron source
Mesoscopic capacitor
[Fève et al., Science (’07)]

Surface acoustic waves
[Hermelin et al., Nature (’11)]
[McNeil et al., Nature (’11)]
Quantum turnstiles

[Giblin et al., Nature Comm.(’12)]
Lorentzian pulses

[Dubois et al., Nature (’13)]

Ù opens the way to all sorts of interference experiments!

3 / 15



Electronic quantum optics in quantum Hall systems
Quantum optics analogs with electrons, i.e. the controlled preparation,

manipulation and measurement of single excitations in ballistic conductors

IN
GR

ED
IE
N
T

LI
ST

Photons
↓

Electrons

Light beam
↓

Chiral edge QHE

Beam-splitter
↓

Point contact

Coherent light source
↓

Single electron source

Single electron source
Mesoscopic capacitor
[Fève et al., Science (’07)]

Surface acoustic waves
[Hermelin et al., Nature (’11)]
[McNeil et al., Nature (’11)]
Quantum turnstiles

[Giblin et al., Nature Comm.(’12)]
Lorentzian pulses

[Dubois et al., Nature (’13)]

Ù opens the way to all sorts of interference experiments!

3 / 15



Electronic quantum optics in quantum Hall systems
Quantum optics analogs with electrons, i.e. the controlled preparation,

manipulation and measurement of single excitations in ballistic conductors

IN
GR

ED
IE
N
T

LI
ST

Photons
↓

Electrons

Light beam
↓

Chiral edge QHE

Beam-splitter
↓

Point contact

Coherent light source
↓

Single electron source

Single electron source
Mesoscopic capacitor
[Fève et al., Science (’07)]

Surface acoustic waves
[Hermelin et al., Nature (’11)]
[McNeil et al., Nature (’11)]
Quantum turnstiles

[Giblin et al., Nature Comm.(’12)]
Lorentzian pulses

[Dubois et al., Nature (’13)]

Ù opens the way to all sorts of interference experiments!
3 / 15



Hanbury-Brown and Twiss interferometry
From astronomy... [Hanbury-Brown and Twiss, Nature 178, 1046 (’56)]

two spatially separated detectors

interference signal used to measure the angular
size of Sirius

intensity interferometry 〈I1(t)I2(t ′)〉
access the statistical properties of a
light source

... to electron quantum optics

IB

V (t)
1 4

3 2
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Detecting minimal excitations
Recall Levitov’s argument
Quantized Lorentzian pulses: V (t) = ~

e
2W

(t−t0)2+W 2 ⇒ Nexc minimal

How can one measure Nexc?

Ù HBT interferometry

random partitioning at the QPC

indep. of excitation charge

binomial statistics (proba. D)

Ù Partition noise counts the total number of excitations!
Zero-frequency current noise at zero temperature (periodic drive)

S = 2
∫

dτ
∫ T

0

dt̄
T S

(
t̄ + τ

2 ; t̄ − τ

2

)
= 2e2

T D(1− D) (Ne + Nh)
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Levitons in the language of PASN
Decompose the voltage bias V (t) = Vdc + Vac(t) (with

∫ T
0 dtVac (t) = 0)

Vdc Ù emits q = eVdc
~Ω electrons per period

Vac(t) Ù energy is not conserved
e− scattered into a superposition of states

−2 −1 0 1 20

1

2

3

t/T

V
(t

)/
V

0

Photo-assisted transport [Dubois et al. PRB 88, 085301 (’13)]

Acquired phase shift φ(t) = e
~
∫ t
−∞ dt ′Vac(t ′): e−iφ(t) =

+∞∑
l=−∞

ple−ilΩt

Floquet description
energy

EF
Voltage
biased
contact

energy

ε

ε+ 2~Ω
ε+ ~Ω
ε
ε− ~Ω
ε− 2~Ω

a(ε) =
+∞∑

l=−∞
pl a0(ε+ l~Ω)

Quantized Lorentzian drive (q ∈ N): pl = 0 for l < −q

Photo-assisted shot noise: S = 2e2

h D(1− D)
+∞∑

l=−∞
Pl |l + q|
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Experimental results
[Dubois et al., Nature 502, 659 (’13) - Dubois et al., PRB 88, 085301 (’13)]

Setup: 2DEG with single-channel constriction

Fermi liquid (' IQHE with ν = 1)

noise measurement Ù excitation number Nexc

different drives: square, sine, periodic Lorentzian

Observing levitons: excess particle number ∆Neh = Nexc − q

Experimental results

Theoretical prediction

Ù Important finite temperature effects

Further characterization in energy and time domain
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Adding interactions to the mix
Interactions in EQO [Marguerite et al., PRB 94, 115311 (’16)]

multiple channels, mostly ν = 2

dramatic effects: spin-charge
separation, fractionalization

leads to strong decoherence
Sizable step still remains: the fractional quantum Hall regime

2DEG in even higher magnetic field

building blocks are anyons

fractional charge and statistics

Motivations for minimal excitations
manipulation at the level of single anyons

studying the exchange properties of anyons

combining quasiparticles through interferometric setups
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Model and derivation
FQH bar at Laughlin filling ν = 1

2n+1 with Hamiltonian

µ = R

µ = L

FQHE

Propagation H0 = 1
4π

∑
µ=R,L

∫
dxvF

propagation velocity

(∂xφµ)2

Voltage HV = −e
√
ν

2π

∫
dxV (x , t)∂xφR

Accounting for the voltage drive V (t)
Bosonization id.

ψR (x , t) = UR√
2πa

e−i
√
νφR (x,t)

+ equations of motion

 =⇒ ψR (x , t) −→ ψR (x , t) e
−iνe

∫ t

−∞
dt′V (t′)

HBT geometry in the weak backscattering regime
tunneling HT = Γ0ψ

†
R(0)ψL(0) + H.c.

backscattering current

IB(t) = ie∗
[

Γ(t)ψ†R(0, t)ψL(0, t)− H.c.
]

FQHE FQHEΓ0
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Main results in the WB regime at ν = 1/3
Minimal excitations ⇔ Poissonian noise
Ù search for vanishing excess noise ∆S = S − 2e∗〈IB(t)〉

Zero temperature
Expression
∆S = 2

T

(
e∗Γ0
vF

)2
1

Γ(2ν)
(Ω

Λ
)2ν−2

×∑l Pl |l + q|2ν−1 [1− Sgn (l + q)]

minimal excitations associated with
quantized Lorentzian drive
with charge Q =

∫ T
0 dt〈I(t)〉 = qe

Ù NOT FRACTIONAL!

strong asymmetry at q ∈ N

Finite temperature θ = kBΘ
~Ω

smoothens divergences
confirms noiseless status of
Lorentzians

Is a perturbative treatment of the QPC sufficient?
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Beyond WB: refermionization
Exact non-perturbative approach for the special filling ν = 1/2
Ù non-Laughlin but important insights into the behavior beyond WB

Bosonized form of the tunneling Hamiltonian, with φ± = φR±φL√
2

HT = Γ0
1

2πaeiφ−(0) + H.c.

φ+ decouples from tunneling, φ− is refermionized
New fermionic entity Ψ(x) ∝ e−iφ−(x) [Chamon et al., PRB 53, 4033 (’96)]

Solve the equations of motion near x = 0 (QPC)

ψa(t) = ψb(t)− γΩeiϕ(t)+iqΩt
∫ t

−∞
dt ′e−γΩ(t−t′)

×
[
e−iϕ(t′)−iqΩt′

ψb(t ′)− H.c.
]

Backscattering current IB(t) = evF
2

[
ψ†b(t)ψb(t)− ψ†a(t)ψa(t)

]
Zero-frequency shot noise

S =
e2

T
4γ2
∑

klm

Re
(

p∗k pl p∗l+mpk+m
)

m2 + 4γ2 Re

[(
2γ2

m − iγ

tanh
(

l−k
2θ

) − m + iγ + 2γ2
m

tanh
(

k+l+m+2q
2θ

))Ψ
(

1
2

+
γ − i(k + q)

2πθ

)]
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Solve the equations of motion near x = 0 (QPC)

ψa(t)

after the QPC

= ψb(t)− γΩeiϕ(t)

e∗
∫ t
−∞ dt ′V (t ′)

+iqΩt
∫ t

−∞
dt ′e−γΩ(t−t′)

×
[
e−iϕ(t′)−iqΩt′

ψb(t ′)

before the QPC

− H.c.
]

Backscattering current IB(t) = evF
2

[
ψ†b(t)ψb(t)− ψ†a(t)ψa(t)

]
Zero-frequency shot noise

S =
e2

T
4γ2
∑

klm

Re
(

p∗k pl p∗l+mpk+m
)

m2 + 4γ2 Re

[(
2γ2

m − iγ

tanh
(

l−k
2θ

) − m + iγ + 2γ2
m

tanh
(

k+l+m+2q
2θ

))Ψ
(

1
2

+
γ − i(k + q)

2πθ

)]
11 / 15



Excess noise and main results
Zero-temperature results
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Hong-Ou-Mandel interferometry
Tool to probe two-photon interferences

two identical photons sent on a beam-splitter

necessarily exit by the same output channel
Ù signature of bosonic statistics

Interference experiment [Hong, Ou and Mandel, PRL 59, 2044 (’87)]

counts occurrences of photons present
in the two output channels

dip is observed when photons arrive at
the same time

signatures of incoming wave packets

Electronic equivalent?
variation on the HBT geometry

2 sources with tunable delay

reveals fermionic statistics
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Levitons in the time domain
Setup and quantity of interest
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Conclusions

Minimal excitations exist in the fractional quantum Hall regime
correspond to a periodic Lorentzian drive with quantized flux
can be detected in an HBT setup
bear an integer electron charge

results confirmed for arbitrary tunneling via exact refermionization at
ν = 1/2

leviton collisions bear a universal HOM signature, identical to the
Fermi liquid case

Minimal excitations in the fractional quantum Hall regime
J. Rech, D. Ferraro, T. Jonckheere, L. Vannucci, M. Sassetti, T. Martin,

arXiv:1606.01122
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From excitation number to excess noise

Number of excitations in the Fermi liquid case

Ne =
∑

k
nF (−k)〈ψ†kψk〉 Nh =

∑
k

nF (k)〈ψkψ
†
k〉

Using the bosonized description, this becomes

Ne/h = v2
F

∫ dtdt ′
(2πa)2 exp

[
2G(t ′ − t)∓ ie

∫ t

t′
dτV (τ)

]
Generalizing to the FQHE: minimal excitation =⇒ vanishing of

N = v2
F

∫ dtdt ′
(2πa)2 exp

[
2νG(t ′ − t) + ie∗

∫ t

t′
dτV (τ)

]
Direct correspondence with excess noise ∆S = S − 2e∗〈IB(t)〉

∆S =
(e∗Γ0
πa

)2 ∫
dτ
∫ T

0

dt̄
T exp

[
2νG (−τ) + ie∗

∫ t̄+ τ
2

t̄− τ2
dt ′′V (t ′′)

]
Back to main
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