Unconventional features in transport and noise in the second Landau level

Keyan Bennaceur
Christian Lupien
Bertrand Reulet
Guillaume Gervais
L.N. Pfeiffer
K. W. West
Outline

• Introduction
 • Quantum Hall effect (QHE)
 • Fractional quantum Hall effect
 • Charge density wave (CDW) in the QHE
 • The second Landau level
 • Hall bar and Corbino geometry

• Low frequency noise measurement
 • Noise and transport measurement in the FQHE and CDW
 • The second Landau level
Quantum Hall effect in conventional 2DEG

Landau level (LL) for Schrödinger electrons:

\[E_N = \hbar \omega_C \left(n + \frac{1}{2} \right) \]

\[\omega_C = eB/m \]

Landau level filled when there is one electron per flux quanta:
\[\phi_0 = \hbar/e \ (\phi = B.S) \]

\[\nu = 1 \]

\[\nu \] represents the filling factor: the number of filled Landau Level
Fractional quantum Hall effect: the composite fermion picture

$\nu < 1$
Fractional quantum Hall effect: the composite fermion picture

Composite Fermions
\(\nu = 1/2 \)
Fractional quantum Hall effect: the composite particle picture

Composite Fermions
\(\nu = 1/2 \)

\[\text{1 CF} = 1 \ e^- + 2 \ \phi_0 \]
Fractional quantum Hall effect: the composite fermion picture

Composite Fermions

$1e^- + 2 \phi_0$

$\nu^* = 1 \Rightarrow \nu = 1/3$

$1 \text{CF} = 1 e^- + 2 \phi_0$
Fractional quantum Hall effect: the composite fermion picture

In general:
\[\nu = \frac{p}{2mp \pm 1} \]
m, p are integer

Composite Fermions
\[1e^- + 2 \phi_0 \]
\[\nu^* = 2 \Rightarrow \nu = 2/5 \]
Charge density wave at higher Landau Level

Landau Level mixing:

\[\kappa = \frac{e^2}{\epsilon l} \frac{1}{\hbar \omega_C} \]

(\(l\) is the distance between electron and \(\omega_C = eB/m\))

Ratio of the Coulomb interaction to the cyclotron energy

Charge density wave (CDW) measured in stripe and bubble phases

Stripe phase observed in anisotropy of transport
The second Landau Level: competition between phases

Observation of a transition from a topologically ordered to a spontaneously broken symmetry phase

N. Samkharadze1,2, K. A. Schreiber3, G. C. Gardner2,3, M. J. Manfra1,2,3,4, E. Fradkin5 and G. A. Csáthy1,3*

Insulating and Fractional Quantum Hall States in the First Excited Landau Level

J. P. Eisenstein,1 K. B. Cooper,1 L. N. Pfeiffer,2 and K. W. West2

1California Institute of Technology, Pasadena, California 91125
2Bell Laboratories, Lucent Technologies, Murray Hill, New Jersey 07974

(Received 24 September 2001; published 30 January 2002)
Hall Bar vs Corbino

Access to R_{xx} and $R_{xy} = R_{Hall}$

Giving access to conductivities:

$$\sigma_{xx} = \frac{\rho_{xx}}{\rho_{xx}^2 + \rho_{xy}^2} \quad \sigma_{xy} = \frac{\rho_{xy}}{\rho_{xx}^2 + \rho_{xy}^2}$$

$$V = \frac{I}{2\pi \sigma_{xx}} \ln \frac{r_0}{r_1}$$

• Access to σ_{xx} without aspect ratio factor
• Bulk measurement, edges states don't participate to transport.
Quantum Hall effect in Corbino geometry

Noise and transport measurements in Corbino

3 Corbins in a sample with distance between contact:

ΔR1 = 550 µm
ΔR2 = 40 µm
ΔR3 = 100 µm

Base T = 7 mK
Electron T ~ 15-20 mK
Current noise

\[S_I(\omega) = \langle \delta I(\omega)^2 \rangle = \langle \delta I(\omega)^2 \rangle_{\text{sample}} + \frac{\langle \delta V(\omega)^2 \rangle_{\text{amp}}}{(Z(\omega) + R_{\text{amp}})^2} + \langle \delta I(\omega)^2 \rangle_{\text{amp}} \]

\[Z(\omega) = R_{\text{ech}}//C_{\text{coax}} \]

Ampli NF, gain 1^7

\[
\sqrt{\langle \delta V^2 \rangle} \approx 2.6 \text{nV/\sqrt{Hz}}
\]

\[
\sqrt{\langle \delta I^2 \rangle} \approx 335 \text{fA/\sqrt{Hz}}
\]
Noise in Crystal phase

\[\nu = 6 \]
\[\nu = 5 \]
\[\nu = 4 \]

\[\frac{1}{2} = \text{stripe phase} \]
\[\frac{1}{4} = \text{bubble phase} \]

\[V_{bias} = 40 \, \mu V \]
Noise in Crystal phase

\[\nu = 5 \]

\[\nu = 4 \]

\[\nu = 6 \]

\[\nu = \frac{1}{2} \]

\[\nu = \frac{3}{4} \]

\[\nu = \frac{1}{4} \]

\[V_{bias} = 220 \mu V \]

\[V_{bias} = 40 \mu V \]

1/2 = stripe phase
1/4 = bubble phase
Transport and noise in the second Landau level

\[\nu = \frac{5}{2}, \frac{7}{3}, \frac{8}{3} \]

RIQHE?
Non linear transport in the second Landau level

Differential conductance ($\frac{\partial I}{\partial V}$)

$v = \frac{5}{2}$
$v = \frac{7}{3}$
$v = \frac{8}{3}$
Non linear transport in the 5/2 state

Differential conductance ($\partial I / \partial V$)
Non linear transport in the 5/2 state

Differential conductance ($\partial I / \partial V$)
Non linear transport in the 5/2 state

Differential conductance ($\partial I / \partial V$)
Non linear transport in the 5/2 state

Differential conductance ($\frac{\partial I}{\partial V}$)
Noise in the 5/2 state
Noise in the 5/2 state
Noise in the 5/2 state
Summary

\(F = \text{fano factor} \)

- **N=2**
 - \(F \sim -50 \)
 - Stripe phase
 - \(\nu = 3 \)
 - Hopping Noise
 - Avalanche Noise

- **N=1**
 - \(F \sim 7/3 \)
 - \(\nu = 7/2 \)
 - \(\nu = 8/3 \)
 - \(\nu = 5/2 \)
 - \(\nu = 7/3 \)

- **CDW**
 - \(\nu = 5 \)

- **CDW and FQH**
 - \(F \sim 1 \)
 - \(F \sim 100 \)

- **CDW and FQH**
 - \(F \sim -200 \)
Conclusion

• First differential conductance and noise measured in FQHE in Corbino geometry
• Crystal phases have a special signature in noise
• Evidence that there is a cohabitation between crystal phases and fractional phases in the SLL from the differential conductance and noise measurements

Thank you for your attention!
Second Landau level at different temperatures

\[S_j \left(A^2 / Hz \right) \times 10^{-24} \]
Second Landau level at different temperatures
Second Landau level at different temperatures

\[S_f \left(\frac{A^2}{H^2} \right) \times 10^{-24} \]

Temperature Levels:
- 20mK
- 30mK
- 75mK

Graph showing the behavior of \(S_f \left(\frac{A^2}{H^2} \right) \) at different magnetic fields \(B(T) \) for various temperatures.