measurement of the hole-conjugate

 edge state structureGDR physique mésoscopique, Aussois

Amir Rosenblatt - Fabien Lafont - Itamar Gurman - Ron Sabo
Diana Mahalu - Vladimir Umansky - Moty Heiblum

FQHE hole-conjugate states

FQHE hole-conjugate states

FQHE hole-conjugate states

FQHE hole-conjugate states

FQHE hole-conjugate states

FQHE hole-conjugate states

FQHE hole-conjugate states

$$
\nu=\frac{n_{s} h}{e B}
$$

A

FQHE hole-conjugate states

Theoretical models for $\nu=2 / 3$

Theoretical models for $v=2 / 3$

Upstream charge modes have never been observed experimentally

Theoretical models for $\nu=2 / 3$

Upstream charge modes have never been observed experimentally

+1111/111111114

2/3

Theoretical models for $\nu=2 / 3$

Kane Fisher and Polchinski, PRL 72, 1994

Plateau at $t=1 / 2$

Theoretical models for $\nu=2 / 3$

Kane Fisher and Polchinski, PRL 72, 1994

Upstream charge modes have never been observed experimentally

> Plateau at $t=1 / 2$

Wang, Meir and Gefen, PRL 111, 2013

Theoretical models for $\nu=2 / 3$

MacDonald and Girvin PRL, 64, 1990

Kane Fisher and Polchinski, PRL 72, 1994

Wang, Meir and Gefen, PRL 111, 2013

Upstream charge modes have never been observed experimentally

> Plateau at $t=1 / 2$

Noise on the

$S \propto(1-t)$

Triggered our work

Edge structure

Allow to distinguish the number of edge channels

Transmission through 2 QPCs $t_{1} \int_{t_{1} \cdot m_{n}^{2}}^{t_{2}}$

Transmission through 2 QPCs

$\nu=2 / 3$

Transmission through 2 QPCs

$\nu=2 / 3$

Transmission through 2 QPCs

$\nu=2 / 3$

Transmission through 2 QPCs

$\nu=2 / 3 \longrightarrow 1 / 3+1 / 3$

Transmission through 2 QPCs

$\nu=2 / 3 \longrightarrow 1 / 3+1 / 3$

Transmission through 2 QPCs

$$
\begin{aligned}
& \begin{aligned}
& t \quad 1 \\
& 0.8-t_{1}=1-t_{1}=0.7 \\
& 0 . t_{1}=0.5
\end{aligned} \\
& 0.6 \\
& 0.4 \\
& \begin{array}{cccc}
-0.2 & 0 & 0.2 \\
& & V_{g 2}(\mathrm{~V})
\end{array} \\
& \nu=2 / 3 \longrightarrow 1 / 3+1 / 3
\end{aligned}
$$

Transmission through 2 QPCs

$$
\begin{aligned}
& \begin{aligned}
& t 1 \\
& 0.8-t_{1}=1-t_{1}=0.7 \\
& 0-t_{1}=0.5
\end{aligned} \\
& 0.6 \\
& 0.2 \\
& \nu=2 / 3 \longrightarrow 1 / 3+1 / 3
\end{aligned}
$$

Transmission through 2 QPCs

$$
\begin{aligned}
& \begin{aligned}
& t 1 \\
& 0.8-t_{1}=1-t_{1}=0.7 \\
&-t_{1}=0.5
\end{aligned} \\
& 0.6 \\
& 0.4 \\
& \begin{array}{ccc}
0.2 & \mathrm{MN} & -t_{1}=0.3 \\
0.0 _1 & 0.2 \\
-0.2 & 0.4 \\
& & V_{g 2}(\mathrm{~V})
\end{array} \\
& \nu=2 / 3 \longrightarrow 1 / 3+1 / 3
\end{aligned}
$$

Transmission through 2 QPCs

$$
\begin{aligned}
& \begin{aligned}
& t 1 \\
& 0.8-t_{1}=1-t_{1}=0.7 \\
&-t_{1}=0.5
\end{aligned} \\
& 0.6 \\
& 0.4 \\
& \begin{array}{ccc}
0.2 & \mathrm{MN} & -t_{1}=0.3 \\
0.0-0.2 & 0.2 & 0.4 \\
& & V_{g 2}(\mathrm{~V})
\end{array} \\
& \nu=2 / 3 \longrightarrow 1 / 3+1 / 3
\end{aligned}
$$

Transmission through 2 QPCs

$$
\nu=2 / 3 \longrightarrow 1 / 3+1 / 3
$$

Transmission through 2 QPCs

$\nu=2 / 3 \longrightarrow 1 / 3+1 / 3$

$$
\begin{aligned}
& { }^{t} 1-t_{1}=1-t_{1}=0.7 \\
& 0.8-t_{1}=0.5 \\
& 0.6-t_{1}=0.3 \\
& \begin{array}{ll}
0.2 \\
0.0-1 & 0.2 \\
V_{g 2}(\mathrm{~V}) \\
N
\end{array}
\end{aligned}
$$

Channels easily mix

Transmission through 2 QPCs

$\nu=3 / 5 \longrightarrow 1 / 3+4 / 15$

Channels easily mix

Edge structure

$$
\nu=3 / 5
$$

$$
\begin{aligned}
& \nu=2 / 3 \\
& 1111111111111 \\
& \longrightarrow \\
& \longrightarrow
\end{aligned}
$$

Edge structure

$$
\nu=3 / 5
$$

$$
\begin{aligned}
& \nu=2 / 3 \\
& \xrightarrow{\text { (11UNUNUNU }}
\end{aligned}
$$

Edge structure

$$
\begin{gathered}
\begin{array}{c}
u=2 / 3 \\
\xrightarrow[n]{n} \\
\frac{1 / 3}{n}
\end{array}
\end{gathered}
$$

What about the neutral modes?

Sample

Neutral transmission $\nu=2 / 3$

Neutral transmission $\nu=2 / 3$

Neutral transmission $\nu=2 / 3$

Neutral transmission $\nu=2 / 3$

The neutral transmission drops on the plateau

Neutral transmission $\nu=2 / 3$

The neutral transmission drops on the plateau A reminiscent signal is present after the QPC closing

Neutral transmission $\nu=3 / 5$

Neutral transmission $\nu=3 / 5$

Most of the neutral signal is attached to the inner edge

Neutral transmission $\nu=3 / 5$

Most of the neutral signal is attached to the inner edge
The reminiscent signal is still present for $\nu=3 / 5$

Neutral transmission vs $G_{\text {QPC }}$

Neutral transmission vs $G_{Q P C}$

Neutral transmission vs $G_{Q P C}$

The neutral transmission is dictated by the conductance at the QPC constriction

Neutral transmission vs $G_{\text {QPC }}$

What about the noise on the plateau?

The neutral transmission is dictated by the conductance at the QPC constriction

Noise measurements

Noise measurements

Noise measurements

Current through the dot when sourcing from charge source

Noise measurements

Current through the dot when sourcing from charge source

Noise measurements

Current through the dot when sourcing from charge source

Noise measurements

Current through the dot when sourcing from charge source

Noise measurements

Noise measurements

Noise measurements

The outer channel follows the usual shot noise behavior
The inner channel appears shot noiseless...

Summary and perspectives

व $\nu=2 / 3$ and $\nu=3 / 5$ are composed of two independent charge channels

Summary and perspectives

व $\nu=2 / 3$ and $\nu=3 / 5$ are composed of two independent charge channels

- Measurement of the transmission of neutral modes at $\nu=2 / 3$ and $\nu=3 / 5$

Summary and perspectives

व $\nu=2 / 3$ and $\nu=3 / 5$ are composed of two independent charge channels

- Measurement of the transmission of neutral modes at $\nu=2 / 3$ and $\nu=3 / 5$

The neutral mode transmission is governed by the FF of the QPC
o Can help theoretical developments

Summary and perspectives

व $\nu=2 / 3$ and $\nu=3 / 5$ are composed of two independent charge channels

- Measurement of the transmission of neutral modes at $\nu=2 / 3$ and $\nu=3 / 5$

$V_{Q P C}(\mathrm{~V})$

$V_{Q P C}(V)$

The neutral mode transmission is governed by the FF of
\square the QPC
o Can help theoretical developments

${ }_{\square}$ Noise measurement reveals that the noise on the plateau at $\nu=2 / 3$ can have thermal origin.

Thank you very much

