Thermal decay of charge quantization in mesoscopic circuits

Edvin G. Idrisov

University of Geneva, Department of Theoretical physics Aussois, France

December 6, 2016

Edvin G. Idrisov (UNIGE)

Thermal decay of charge quantization...

December 6, 2016 1 / 22

Ivan P. Levkivskyi, ETH, Zurich

Eugene V. Sukhorukov, UNIGE

Edvin G. Idrisov (UNIGE)

Thermal decay of charge quantization...

December 6, 2016 2 / 22

- 1 Introduction: charge quantization, energy scales, SET
- 2 Experiment in the group of Frederic Pierre: charge quantization with quantum fluctuations, *Nature 536, 5862 (2016)*
- 3 Theoretical explanation: perturbation, quantum and thermal regimes

Introduction: charge quantization

Isolated metallic island: Q = eN, where $e = 1.6 \times 10^{-19}$ C and N is an integer Electrostatic energy: $E = \frac{Q^2}{2C} = E_C N$, where $E_C = \frac{e^2}{2C}$ is a charging energy Mean level spacing: δ_S

For more details: Y.V. Nazarov, Y.M. Blanter, Quantum Transport: Introduction to Nanoscience (2009)

A cubic island of size L:

Number of atoms: $N_{at} \simeq (L/a)^3$, *a* is interatomic distance Level spacing: $\delta_S \simeq E_F/N_{at}$; Charging energy: $E_C \simeq e^2/L$ Fermi energy: $E_F \simeq e^2/a$; Ratio: $\delta_S/E_C \simeq 1/N_{at}^{2/3}$ <u>Estimates:</u> L = 100 nm, $N_{at} = 10^9$, $E_F \simeq 10 eV \Rightarrow \delta_S \simeq 10^{-8} eV$, $E_C \simeq 10^{-2} eV$

 $\delta_S/E_C \ll 1$

For more details: Y.V. Nazarov, Y.M. Blanter, Quantum Transport: Introduction to Nanoscience (2009)

Introduction: single-electron transistor (SET)

Coulomb blockade: $G_{L/R} \ll e^2/\hbar \simeq G_Q$ and $k_B T < E_C$ Typical capacitance: $C_{L/R} \sim 10^{-16}$ F and $C_g \ll C_{L/R}$

For more details: Y.V. Nazarov, Y.M. Blanter, Quantum Transport: Introduction to Nanoscience (2009)

Experiment: S. Jezouin et al. Nature 536, 5862 (2016)

Magnetic field: $B \simeq 4$ T; Level spacing: $\delta_S \simeq k_B \times 0.2 \mu K \simeq 2 \times 10^{-11} eV$ Charging energy: $E_C \simeq k_B \times 0.3 K \simeq 3 \times 10^{-5} eV$

Edvin G. Idrisov (UNIGE)

Experiment: visibility

Degree of charge quantization:

$$V(T/E_C) = \frac{G_{max} - G_{min}}{G_{max} + G_{min}}$$

Linear conductance: $G = \frac{d\langle I \rangle}{d\Delta \mu} \Big|_{\Delta \mu = 0}$

Full charge quantization: V = 1

Absence of charge quantization: V = 0

Energy scales in the experiment:

Level spacing: $\delta_S \simeq k_B \times 0.2 \mu K \simeq 2 \times 10^{-11} eV$ Charging energy: $E_C \simeq k_B \times 0.3 K \simeq 3 \times 10^{-5} eV$ Temperature: $T \simeq 15 \div 200 mK[(13 \div 200) \times 10^{-7} eV]$

Theory: low energy effective theory of QH edge states

Bosonisation: $\psi(x) \propto \exp[i\phi(x)]$, $(e = \hbar = k_B = 1)$

Edge states are collective fluctuations of the charge densities:

$$\rho_{\alpha j}(x) = (1/2\pi)\partial_x \phi_{\alpha j}(x)$$

Canonical commutation relations:

$$[\partial_x \phi_{\alpha j}(x), \phi_{\beta k}(y)] = (-1)^{\alpha} 2\pi i \delta_{\alpha \beta} \delta_{jk} \delta(x-y)$$

Take into account Coulomb interaction at the metallic node!!!

Edvin G. Idrisov (UNIGE)

Hamiltonian: $H = H_0 + H_{int}$ Kinetic term: $H_0 = \frac{v_F}{4\pi} \sum_{\alpha,j} \int dx (\partial_x \phi_{\alpha j}(x))^2$ Coulomb interaction at the metallic node: $H_{int} = \frac{(Q-Q_0)^2}{2C}$ $Q = \frac{1}{2\pi} \int_0^\infty dx \left[\partial_x \phi_{in1}(x) + \partial_x \phi_{out2}(x)\right] + \frac{1}{2\pi} \int_{-\infty}^0 dx \left[\partial_x \phi_{in2}(x) + \partial_x \phi_{out1}(x)\right]$ $Q_0 = C_g V_g$ Quantum Langevin equations:

$$egin{aligned} rac{dQ(t)}{dt} &= \sum_{lpha=1,2} j_{ ext{in}lpha}(t) - \sum_{lpha=1,2} j_{ ext{out}lpha}(t), \ j_{ ext{out}lpha}(t) &= rac{Q(t)-Q_0}{2\pi C} + j^s_lpha(t). \end{aligned}$$

Charge stored in the metallic grain: $\langle Q \rangle = Q_0 + \Delta \mu C/2$

Average current: $\langle I \rangle_0 = \Delta \mu / 4 \pi$

Bare conductance: $G_0 = 1/4\pi$

Theory: tunneling

Tunneling Hamitonian:

$$H_{\rm T} = A_L + A_R + \text{H.c.},$$

$$A_L = \frac{\tau_L}{a} e^{i\phi_{\rm in1}(0) - i\phi_{\rm out2}(0)}$$

$$A_R = \frac{\tau_R}{a} e^{i\phi_{\rm out1}(0) - i\phi_{\rm in2}(0)}$$

Edvin G. Idrisov (UNIGE)

December 6, 2016

3

Theory: symmetric barriers

Symmetric barriers: left and right QPC's are almost fully open Current: $\langle I \rangle = \langle I \rangle_0 + I_{inc} + I_{coh}$ $I_{inc} = I_{LL} + I_{RR}$ is an incoherent contribution $I_{coh} = I_{LR} + I_{RL}$ is an coherent contribution Perturbation in tunneling couplings $\tau_{L,R}$: $I_{II'} = -\frac{1}{2} \int dt \langle \left[A_I^{\dagger}(t), A_{I'}(0) \right] \rangle_0$ Averaging: $\rho_0 \propto \exp\left[-(H_0 + H_{int})/T\right]$ is an equilibrium density matrix

Theory: symmetric barriers, conductance

Quantum regime: $T/E_C \ll 1 \ (T \gg \Gamma(Q_0))$

$$G = \frac{1}{4\pi} \left(1 - \frac{\Gamma(Q_0)}{T} \right)$$

$$\Gamma(Q_0) = \frac{e^{\gamma} E_C}{2\pi v_F^2} \left[|\tau_L|^2 + |\tau_R|^2 + 2|\tau_L| |\tau_R| \cos(2\pi Q_0) \right]$$

A. Furusaki, K. A. Matveev, Phys. Rev. B 52, 16676 (1995) <u>Thermal regime:</u> $T/E_C \gg 1$

$$G = \frac{1}{4\pi} \left[1 - \frac{|\tau_L|^2 + |\tau_R|^2 + 2|\tau_L||\tau_R|F(T)\cos(2\pi Q_0)}{2v_F^2} \right]$$
$$F(T) = 2\pi \sqrt{\frac{\pi T}{E_C}} \exp\left[-\frac{\pi^2 T}{E_C}\right]$$

14 / 22

Quantum regime: $T/E_C \ll 1$

$$V/V_0 = \frac{2e^{\gamma}E_C}{T}$$

 $V_0 = | au_L| | au_R| / 2\pi v_F^2$ and $\gamma pprox 0.5772$ is an Euler's constant

Thermal regime: $T/E_C \gg 1$

$$V/V_0 = 4\pi\sqrt{\pi}\sqrt{\frac{\pi^2 T}{E_C}}\exp\left[-\frac{\pi^2 T}{E_C}
ight]$$

Edvin G. Idrisov (UNIGE)

15 / 22

Theory: symmetric barriers, visibility

December 6, 2016 16 / 22

Theory: asymmetric barriers

Asymmetric barriers: the left QPC is almost fully open while right one is fully closed Quantum Langevin equations: the right arm is free

Double perturbation theory, first in γ_R and corrections to it in τ_L :

$$G = G_{inc} + G_{coh}$$

Theory: asymmetric barriers, conductance

Quantum regime: $T/E_C \ll 1$

$$G = G_R \frac{2\pi^4 T^2}{3e^{2\gamma} E_C^2} \left[1 - \xi \frac{|\tau_L|}{v_F} \cos(2\pi Q_0) \right]$$

 $G_R = |\gamma_R|^2 / 2\pi v_F^2$, A. Furusaki, K. A. Matveev, Phys. Rev. B 52, 16676 (1995)

Thermal regime: $T/E_C \gg 1$

$$G = G_R \left[1 - \frac{2|\tau_L|}{v_F} M(T) \cos(2\pi Q_0) \right]$$
$$M(T) = 2 \left(\frac{\pi T}{E_C} \right)^{3/2} \exp\left[-\frac{\pi^2 T}{E_C} \right]$$

18 / 22

Quantum regime: $T/E_C \ll 1$

$$V/V_0 = \sqrt{2\pi}\xi$$

 $V_0 = |\tau_L|/\sqrt{2\pi}v_F$

Thermal regime: $T/E_C \gg 1$

$$V/V_0 = 4\sqrt{\frac{2}{\pi}} \left(\frac{\pi^2 T}{E_C}\right)^{3/2} \exp\left[-\frac{\pi^2 T}{E_C}\right]$$

э

< 🗗 🕨 🔸

Theory: asymmetric barriers, visibility

Thermal decay of charge quantization...

- 1 Transport properties and charge quantization phenomenon in SET
- 2 Perturbation theory in tunneling coupling. Linear conductance
- 3 Two regimes: quantum, $T \ll E_C$ and thermal, $T \gg E_C$
- 4 Comparison with experiment
- 5 Non-perturbation. Non-linear Langevin equations

Frederic Pierre et al.

CNRS, Universite Paris SudUniversite Paris-Saclay, Universite Paris Diderot-Sorbonne Paris Cit, 91120 Palaiseau, France

Edouard Boulat

Universite Paris Diderot, CNRS UMR 7162, 75013 Paris, France

Leonid Glazman

Yale University, New Haven, Connecticut 06520, USA